IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i13p7997-d851965.html
   My bibliography  Save this article

The Impact of Rationalization and Upgrading of Industrial Structure on Carbon Emissions in the Beijing-Tianjin-Hebei Urban Agglomeration

Author

Listed:
  • Runde Gu

    (School of Management, Tianjin University of Technology, Tianjin 300384, China)

  • Chunfa Li

    (School of Management, Tianjin University of Technology, Tianjin 300384, China)

  • Dongdong Li

    (School of Management, Tianjin University of Technology, Tianjin 300384, China)

  • Yangyang Yang

    (School of Management, Tianjin University of Technology, Tianjin 300384, China)

  • Shan Gu

    (Tians Engineering Technology Group Co., Ltd., Shijiazhuang 050035, China)

Abstract

Carbon dioxide mainly comes from industrial economic activities. Industrial structure optimization is an effective way to reduce carbon dioxide emissions. This paper uses the panel data of 13 cities in the Beijing-Tianjin-Hebei urban agglomeration from 2006 to 2019, uses the Theil index to calculate the industrial structure rationalization index, and uses the proportion of industrial added value to calculate the industrial structure upgrade index. By constructing the STIRPAT model, this paper quantitatively analyzes the impact of industrial structure rationalization and upgrade on carbon emissions. The results show that the rationalization and upgrading of industrial structure in the Beijing-Tianjin-Hebei urban agglomeration significantly inhibit carbon emissions. Compared with the rationalization of the industrial structure, the upgrading of industrial structure in the Beijing-Tianjin-Hebei urban agglomeration has a better effect on carbon emission reduction. For the Beijing-Tianjin-Hebei urban agglomeration, government expenditure on science and technology can promote the upgrading of industrial structure to a certain extent, thereby reducing carbon emissions. There is a big gap between the industrial structure development level of Hebei province and that of Beijing and Tianjin. Finally, based on the conclusion, this paper puts forward the policy enlightenment of promoting the optimization process of industrial structure and reducing carbon emissions of the Beijing-Tianjin-Hebei urban agglomeration.

Suggested Citation

  • Runde Gu & Chunfa Li & Dongdong Li & Yangyang Yang & Shan Gu, 2022. "The Impact of Rationalization and Upgrading of Industrial Structure on Carbon Emissions in the Beijing-Tianjin-Hebei Urban Agglomeration," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:7997-:d:851965
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/13/7997/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/13/7997/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li-Ming Xue & Zhi-Xue Zheng & Shuo Meng & Mingjun Li & Huaqing Li & Ji-Ming Chen, 2022. "Carbon emission efficiency and spatio-temporal dynamic evolution of the cities in Beijing-Tianjin-Hebei Region, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7640-7664, June.
    2. Guohua Qu & Yue Zhang & Kaichao Tan & Jiangtao Han & Weihua Qu, 2022. "Exploring Knowledge Domain and Emerging Trends in Climate Change and Environmental Audit: A Scientometric Review," IJERPH, MDPI, vol. 19(7), pages 1-22, March.
    3. Liu, Nan & Ma, Zujun & Kang, Jidong, 2015. "Changes in carbon intensity in China's industrial sector: Decomposition and attribution analysis," Energy Policy, Elsevier, vol. 87(C), pages 28-38.
    4. Yi Chai & Xueqin Lin & Dai Wang, 2021. "Industrial Structure Transformation and Layout Optimization of Beijing-Tianjin-Hebei Region under Carbon Emission Constraints," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanran Liu & Lei Tang & Guangfu Liu, 2022. "Carbon Dioxide Emissions Reduction through Technological Innovation: Empirical Evidence from Chinese Provinces," IJERPH, MDPI, vol. 19(15), pages 1-19, August.
    2. Qingyan Zhu, 2023. "How Will the Relationship between Technological Innovation and Green Total Factor Productivity Change under the Influence of Service-Oriented Upgrading of Industrial Structure?," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    3. Yong Xiao & Cheng Yong & Wei Hu & Hanyun Wang, 2023. "Factors Influencing Carbon Emissions in High Carbon Industries in the Zhejiang Province and Decoupling Effect Analysis," Sustainability, MDPI, vol. 15(22), pages 1-22, November.
    4. Yuan Zeng & Wengang Zhang & Jingwen Sun & Li’ao Sun & Jun Wu, 2023. "Research on Regional Carbon Emission Reduction in the Beijing–Tianjin–Hebei Urban Agglomeration Based on System Dynamics: Key Factors and Policy Analysis," Energies, MDPI, vol. 16(18), pages 1-20, September.
    5. Jianshi Wang & Shangkun Yu & Mengcheng Li & Yu Cheng & Chengxin Wang, 2022. "Study of the Impact of Industrial Restructuring on the Spatial and Temporal Evolution of Carbon Emission Intensity in Chinese Provinces—Analysis of Mediating Effects Based on Technological Innovation," IJERPH, MDPI, vol. 19(20), pages 1-18, October.
    6. Kai Yuan & Biao Hu & Xinlong Li & Tingyun Niu & Liang Zhang, 2023. "Exploration of Coupling Effects in the Digital Economy and Eco-Economic System Resilience in Urban Areas: Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration," Sustainability, MDPI, vol. 15(9), pages 1-28, April.
    7. Qifan Guan, 2023. "Decomposing and Decoupling the Energy-Related Carbon Emissions in the Beijing–Tianjin–Hebei Region Using the Extended LMDI and Tapio Index Model," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    8. Chun Fu & Can Zhou, 2023. "Examining the Impact of Real Estate Development on Carbon Emissions Using Differential Generalized Method of Moments and Dynamic Panel Threshold Model," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    9. Jinxing Hu & Cuiying Shao & Zhaolong Zhang, 2022. "The Impact of Sustainable Regional Development Policy on Carbon Emissions: Evidence from Yangtze River Delta of China," Energies, MDPI, vol. 15(24), pages 1-25, December.
    10. Linan Gao & Xiaofei Liu & Xinyi Mei & Guangwei Rui & Jingcheng Li, 2022. "Research on the Spatial-Temporal Distribution Characteristics and Influencing Factors of Carbon Emission Efficiency in China’s Metal Smelting Industry—Based on the Three-Stage DEA Method," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    11. Congqi Wang & Rui Zhang & Haslindar Ibrahim & Pengzhen Liu, 2023. "Can the Digital Economy Enable Carbon Emission Reduction: Analysis of Mechanisms and China’s Experience," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    12. Pei Zhao & Junhua Guo & Yang Wang, 2023. "How Does the Digital Economy Affect Green Development?—Evidence from 284 Cities in China," Sustainability, MDPI, vol. 15(15), pages 1-24, July.
    13. Xuehui Yang & Jiaping Zhang & Lehua Bi & Yiming Jiang, 2023. "Does China’s Carbon Trading Pilot Policy Reduce Carbon Emissions? Empirical Analysis from 285 Cities," IJERPH, MDPI, vol. 20(5), pages 1-24, March.
    14. Zheng Jiang & Shuohua Zhang & Wei Li, 2022. "Exploration of Urban Emission Mitigation Pathway under the Carbon Neutrality Target: A Case Study of Beijing, China," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    15. Muwei Xi & Dingqing Wang & Ye Xiang, 2023. "Fiscal Expenditure on Sports and Regional Carbon Emissions: Evidence from China," Sustainability, MDPI, vol. 15(9), pages 1-15, May.
    16. Zicheng Wang & Xiaoliang Zhou, 2023. "Can Innovation-Driven Policy Reduce China’s Carbon Emission Intensity?—A Quasi-Natural Experiment Based on the National Innovative City Pilot Policy," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    17. Tian, Ying & Pang, Jun, 2023. "What causes dynamic change of green technology progress: Convergence analysis based on industrial restructuring and environmental regulation," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 189-199.
    18. Guoliang Fan & Anni Zhu & Hongxia Xu, 2023. "Analysis of the Impact of Industrial Structure Upgrading and Energy Structure Optimization on Carbon Emission Reduction," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    19. Xu Dong & Yang Chen & Qinqin Zhuang & Yali Yang & Xiaomeng Zhao, 2022. "Agglomeration of Productive Services, Industrial Structure Upgrading and Green Total Factor Productivity: An Empirical Analysis Based on 68 Prefectural-Level-and-Above Cities in the Yellow River Basin," IJERPH, MDPI, vol. 19(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huayong Niu & Zhishuo Zhang & Manting Luo, 2022. "Evaluation and Prediction of Low-Carbon Economic Efficiency in China, Japan and South Korea: Based on DEA and Machine Learning," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    2. Yang Zhang & Wenlong Li & Jiawen Sun & Haidong Zhao & Haiying Lin, 2023. "A Research Paradigm for Industrial Spatial Layout Optimization and High-Quality Development in The Context of Carbon Peaking," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    3. Sandro Brunelli & Anel Murzakhmetova & Camilla Falivena, 2022. "Environmental Auditing in Rural Areas: Current Patterns and Future Challenges in Central Asia," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    4. Qifan Guan, 2023. "Decomposing and Decoupling the Energy-Related Carbon Emissions in the Beijing–Tianjin–Hebei Region Using the Extended LMDI and Tapio Index Model," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    5. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Hongtao Jiang & Jian Yin & Yuanhong Qiu & Bin Zhang & Yi Ding & Ruici Xia, 2022. "Industrial Carbon Emission Efficiency of Cities in the Pearl River Basin: Spatiotemporal Dynamics and Driving Forces," Land, MDPI, vol. 11(8), pages 1-22, July.
    7. He Li & Kevin Lo & Mark Wang & Pingyu Zhang & Longyi Xue, 2016. "Industrial Energy Consumption in Northeast China under the Revitalisation Strategy: A Decomposition and Policy Analysis," Energies, MDPI, vol. 9(7), pages 1-13, July.
    8. Xiaohua Hou & Bo Cheng & Zhiliang Xia & Haijun Zhou & Qi Shen & Yanjie Lu & Ehsan Nazemi & Guodao Zhang, 2023. "Investigating the Relationship between Economic Growth, Institutional Environment and Sulphur Dioxide Emissions," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    9. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    10. Shiwei Yu & Xing Hu & Xuejiao Zhang & Zhenxi Li, 2019. "Convergence of per capita carbon emissions in the Yangtze River Economic Belt, China," Energy & Environment, , vol. 30(5), pages 776-799, August.
    11. Xinlin Zhang & Yuan Zhao & Qi Sun & Changjian Wang, 2017. "Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang, China," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    12. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).
    13. Xiaoyu He & Bo Li, 2023. "A Study on the Influence of Green Industrial Policy on Urban Green Development: Based on the Empirical Data of Ecological Industrial Park Pilot Construction," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    14. Huang, Jian-Bai & Luo, Yu-Mei & Feng, Chao, 2019. "An overview of carbon dioxide emissions from China's ferrous metal industry: 1991-2030," Resources Policy, Elsevier, vol. 62(C), pages 541-549.
    15. Wang, Hongxia & Zhang, Junfeng & Fang, Hong, 2017. "Electricity footprint of China’s industrial sectors and its socioeconomic drivers," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 98-106.
    16. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    17. Wang, Juan & Hu, Mingming & Rodrigues, João F.D., 2018. "The evolution and driving forces of industrial aggregate energy intensity in China: An extended decomposition analysis," Applied Energy, Elsevier, vol. 228(C), pages 2195-2206.
    18. Qi Wang & Jiejun Huang & Han Zhou & Jiaqi Sun & Mingkun Yao, 2022. "Carbon Emission Inversion Model from Provincial to Municipal Scale Based on Nighttime Light Remote Sensing and Improved STIRPAT," Sustainability, MDPI, vol. 14(11), pages 1-17, June.
    19. Yunting Feng & Yong Geng & Ge Zhao & Mengya Li, 2022. "Carbon Emission Constraint Policy in an OEM and Outsourcing Remanufacturer Supply Chain with Consumer Preferences," IJERPH, MDPI, vol. 19(8), pages 1-16, April.
    20. Zahir Barahmand & Marianne S. Eikeland, 2022. "Techno-Economic and Life Cycle Cost Analysis through the Lens of Uncertainty: A Scoping Review," Sustainability, MDPI, vol. 14(19), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:7997-:d:851965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.