IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v214y2014i1p143-16510.1007-s10479-012-1087-4.html
   My bibliography  Save this article

Total factor productivity growth and directions of technical change bias: evidence from 99 OECD and non-OECD countries

Author

Listed:
  • Po-Chi Chen
  • Ming-Miin Yu

Abstract

Based on data of 99 nations during 1991–2003, the Malmquist index and its composition of technical change and efficiency change are estimated. In particular, the hypothesis of neutral technology is released to divide technology into the magnitude of the shift in the world production frontier and input-biased technology, and to show that in order to gain more benefit or not to lose so much benefit from technology change, it is important for countries to coordinate their choice of input mix with the directions of technology bias if their technical changes are biased. The results indicate that both OECD and non-OECD countries tend to show capital-using/labor-saving, capital-using/energy-saving and energy-using/labor-saving technical change bias over the entire period. The production pattern of a majority of countries is shown to have been able to take advantage of their technological innovations. Copyright Springer Science+Business Media, LLC 2014

Suggested Citation

  • Po-Chi Chen & Ming-Miin Yu, 2014. "Total factor productivity growth and directions of technical change bias: evidence from 99 OECD and non-OECD countries," Annals of Operations Research, Springer, vol. 214(1), pages 143-165, March.
  • Handle: RePEc:spr:annopr:v:214:y:2014:i:1:p:143-165:10.1007/s10479-012-1087-4
    DOI: 10.1007/s10479-012-1087-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1087-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1087-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitri Margaritis & Frank Scrimgeour & Michael Cameron & John Tressler, 2005. "Productivity and Economic Growth in Australia, New Zealand and Ireland," Agenda - A Journal of Policy Analysis and Reform, Australian National University, College of Business and Economics, School of Economics, vol. 12(4), pages 291-308.
    2. Joan Robinson, 1938. "The Classification of Inventions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 5(2), pages 139-142.
    3. Barros, Carlos Pestana & Weber, William L., 2009. "Productivity growth and biased technological change in UK airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(4), pages 642-653, July.
    4. Jens Kaüger & Uwe Cantner & Horst Hanusch, 2000. "Total factor productivity, the east Asian miracle, and the world production frontier," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 136(1), pages 111-136, March.
    5. Moro, Alessio, 2012. "Biased Technical Change, Intermediate Goods, And Total Factor Productivity," Macroeconomic Dynamics, Cambridge University Press, vol. 16(2), pages 184-203, April.
    6. Shawna Grosskopf & Sharmistha Self, 2006. "Factor Accumulation Or Tfp? A Reassessment Of Growth In Southeast Asia," Pacific Economic Review, Wiley Blackwell, vol. 11(1), pages 39-58, February.
    7. Raab, Raymond L. & Feroz, Ehsan Habib, 2007. "A productivity growth accounting approach to the ranking of developing and developed nations," The International Journal of Accounting, Elsevier, vol. 42(4), pages 396-415, December.
    8. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1055-1089.
    9. Cristiano Antonelli & Francesco Quatraro, 2010. "The effects of biased technological change on total factor productivity: empirical evidence from a sample of OECD countries," The Journal of Technology Transfer, Springer, vol. 35(4), pages 361-383, August.
    10. Weber, William L. & Domazlicky, Bruce R., 1999. "Total factor productivity growth in manufacturing: a regional approach using linear programming," Regional Science and Urban Economics, Elsevier, vol. 29(1), pages 105-122, January.
    11. Dimitris Margaritis & Rolf Färe & Shawna Grosskopf, 2007. "Productivity, convergence and policy: a study of OECD countries and industries," Journal of Productivity Analysis, Springer, vol. 28(1), pages 87-105, October.
    12. Wang, Chunhua, 2007. "Decomposing energy productivity change: A distance function approach," Energy, Elsevier, vol. 32(8), pages 1326-1333.
    13. Daron Acemoglu, 2002. "Technical Change, Inequality, and the Labor Market," Journal of Economic Literature, American Economic Association, vol. 40(1), pages 7-72, March.
    14. Greenwood, Jeremy & Hercowitz, Zvi & Krusell, Per, 1997. "Long-Run Implications of Investment-Specific Technological Change," American Economic Review, American Economic Association, vol. 87(3), pages 342-362, June.
    15. Costello, Donna M, 1993. "A Cross-Country, Cross-Industry Comparison of Productivity Growth," Journal of Political Economy, University of Chicago Press, vol. 101(2), pages 207-222, April.
    16. Rolf Färe & Shawna Grosskopf & Dimitri Margaritis, 2006. "Productivity Growth and Convergence in the European Union," Journal of Productivity Analysis, Springer, vol. 25(1), pages 111-141, April.
    17. Subodh Kumar & R. Robert Russell, 2002. "Technological Change, Technological Catch-up, and Capital Deepening: Relative Contributions to Growth and Convergence," American Economic Review, American Economic Association, vol. 92(3), pages 527-548, June.
    18. Daniel J. Henderson & R. Robert Russell, 2005. "Human Capital And Convergence: A Production-Frontier Approach ," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(4), pages 1167-1205, November.
    19. Dietmar Lindenberger, 2003. "Service Production Functions," Journal of Economics, Springer, vol. 80(2), pages 127-142, October.
    20. E. Grifell-Tatjé & C.A.K. Lovell, 1997. "A DEA-based analysis of productivity change and intertemporal managerial performance," Annals of Operations Research, Springer, vol. 73(0), pages 177-189, October.
    21. Alwyn Young, 1995. "The Tyranny of Numbers: Confronting the Statistical Realities of the East Asian Growth Experience," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(3), pages 641-680.
    22. Rolf Fare & Shawna Grosskopf & Wen-Fu Lee, 2001. "Productivity and technical change: the case of Taiwan," Applied Economics, Taylor & Francis Journals, vol. 33(15), pages 1911-1925.
    23. Felipe, Jesus & McCombie, J. S. L., 2001. "Biased Technical Change, Growth Accounting, and the Conundrum of the East Asian Miracle," Journal of Comparative Economics, Elsevier, vol. 29(3), pages 542-565, September.
    24. Luis R. Murillo-Zamorano, 2005. "The Role of Energy in Productivity Growth: A Controversial Issue?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 69-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heru Iswahyudi, 2016. "Back to oil: Indonesia economic growth after Asian financial crisis," Economic Journal of Emerging Markets, Universitas Islam Indonesia, vol. 8(1), pages 25-44, April.
    2. Hideyuki Mizobuchi, 2015. "Multiple Directions for Measuring Biased Technical Change," CEPA Working Papers Series WP092015, School of Economics, University of Queensland, Australia.
    3. Alexander Yu. Apokin & Irina Ipatova, 2016. "How R&D Expenditures Influence Total Factor Productivity and Technical Efficiency?," HSE Working papers WP BRP 128/EC/2016, National Research University Higher School of Economics.
    4. Yu Jiang & Na Wang, 2022. "Impact of Biased Technological Change on High-Quality Economic Development of China’s Forestry: Based on Mediating Effect of Industrial Structure Upgrading," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    5. Martin Boďa & Mariana Považanová, 2020. "Productivity patterns in Europe: adaptation of the Malmquist index to measuring group performance and productivity change over time," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 47(4), pages 949-989, November.
    6. Shuai Zhang & Xiaoman Zhao & Changwei Yuan & Xiu Wang, 2020. "Technological Bias and Its Influencing Factors in Sustainable Development of China’s Transportation," Sustainability, MDPI, vol. 12(14), pages 1-26, July.
    7. Weijiang Liu & Mingze Du, 2021. "Is Technological Progress Selective for Multiple Pollutant Emissions?," IJERPH, MDPI, vol. 18(17), pages 1-17, September.
    8. Vu, Khuong & Hartley, Kris, 2022. "Sources of transport sector labor productivity performance in industrialized countries: Insights from a decomposition analysis," Transport Policy, Elsevier, vol. 129(C), pages 204-218.
    9. Konstantinos Petridis & Alexander Chatzigeorgiou & Emmanouil Stiakakis, 2016. "A spatiotemporal Data Envelopment Analysis (S-T DEA) approach: the need to assess evolving units," Annals of Operations Research, Springer, vol. 238(1), pages 475-496, March.
    10. Qingyan Zhu, 2023. "How Will the Relationship between Technological Innovation and Green Total Factor Productivity Change under the Influence of Service-Oriented Upgrading of Industrial Structure?," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    11. Ming-Miin Yu & Li-Hsueh Chen, 2020. "A meta-frontier network data envelopment analysis approach for the measurement of technological bias with network production structure," Annals of Operations Research, Springer, vol. 287(1), pages 495-514, April.
    12. Qizheng Gao & Jianqing Zhang & Guo Chen, 2023. "Firm heterogeneity, biased technological change, and total factor productivity: Evidence from China," Journal of Productivity Analysis, Springer, vol. 60(2), pages 147-177, October.
    13. Zhiyang Shen & Kristiaan Kerstens & Tomas Baležentis, 2023. "An environmental Luenberger–Hicks–Moorsteen total factor productivity indicator: empirical analysis considering undesirable outputs either as inputs or outputs, and attention for infeasibilities," Post-Print hal-04273656, HAL.
    14. Du, Kerui & Lin, Boqiang, 2017. "International comparison of total-factor energy productivity growth: A parametric Malmquist index approach," Energy, Elsevier, vol. 118(C), pages 481-488.
    15. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2018. "Energy-biased technical change in the Chinese industrial sector with CES production functions," Energy, Elsevier, vol. 148(C), pages 896-903.
    16. Naoki Sekiguchi, 2022. "The evolution of non-OECD countries in the twenty-first century: developments in steel trade and the role of technology," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(1), pages 103-132, March.
    17. Yan, Siqi & Peng, Jianchao & Wu, Qun, 2020. "Exploring the non-linear effects of city size on urban industrial land use efficiency: A spatial econometric analysis of cities in eastern China," Land Use Policy, Elsevier, vol. 99(C).
    18. Konstantinos Petridis & Alexander Chatzigeorgiou & Emmanouil Stiakakis, 2016. "A spatiotemporal Data Envelopment Analysis (S-T DEA) approach: the need to assess evolving units," Annals of Operations Research, Springer, vol. 238(1), pages 475-496, March.
    19. Kerstin Hotte & Melline Somers & Angelos Theodorakopoulos, 2022. "Technology and jobs: A systematic literature review," Papers 2204.01296, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López-Pueyo, Carmen & Mancebón, María-Jesús, 2010. "Innovation, accumulation and assimilation: Three sources of productivity growth in ICT industries," Journal of Policy Modeling, Elsevier, vol. 32(2), pages 268-285, March.
    2. Kerekes, Monika, 2007. "Analyzing patterns of economic growth: a production frontier approach," Discussion Papers 2007/15, Free University Berlin, School of Business & Economics.
    3. Vu, Khuong & Hartley, Kris, 2022. "Sources of transport sector labor productivity performance in industrialized countries: Insights from a decomposition analysis," Transport Policy, Elsevier, vol. 129(C), pages 204-218.
    4. Walheer, Barnabé, 2016. "Growth and convergence of the OECD countries: A multi-sector production-frontier approach," European Journal of Operational Research, Elsevier, vol. 252(2), pages 665-675.
    5. Carmen L�pez Pueyo & M� Jes�s Manceb�n Torrubia, 2009. "Sources of productivity growth and convergence in ict industries: an intertemporal non-parametric frontier approach?," Documentos de Trabajo dt2009-04, Facultad de Ciencias Económicas y Empresariales, Universidad de Zaragoza.
    6. T. Gries & R. Grundmann & I. Palnau & M. Redlin, 2017. "Innovations, growth and participation in advanced economies - a review of major concepts and findings," International Economics and Economic Policy, Springer, vol. 14(2), pages 293-351, April.
    7. Alexander Schiersch & Heike Belitz & Martin Gornig, 2012. "Is Technical Progress Sectorally Concentrated?: An Empirical Analysis for Western European Countries," Discussion Papers of DIW Berlin 1217, DIW Berlin, German Institute for Economic Research.
    8. Li, Ke & Lin, Boqiang, 2018. "How to promote energy efficiency through technological progress in China?," Energy, Elsevier, vol. 143(C), pages 812-821.
    9. Weijiang Liu & Mingze Du & Yuxin Bai, 2021. "Mechanisms of Environmental Regulation’s Impact on Green Technological Progress—Evidence from China’s Manufacturing Sector," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    10. Wang, Chunhua & Cao, Xiaoyong & Mao, Jie & Qin, Ping, 2019. "The changes in coal intensity of electricity generation in Chinese coal-fired power plants," Energy Economics, Elsevier, vol. 80(C), pages 491-501.
    11. Wang, Chunhua, 2013. "Changing energy intensity of economies in the world and its decomposition," Energy Economics, Elsevier, vol. 40(C), pages 637-644.
    12. Walheer, Barnabé, 2018. "Labour productivity growth and energy in Europe: A production-frontier approach," Energy, Elsevier, vol. 152(C), pages 129-143.
    13. Jens J. Krüger, 2017. "Revisiting the world technology frontier: a directional distance function approach," Journal of Economic Growth, Springer, vol. 22(1), pages 67-95, March.
    14. Wang, Chunhua, 2011. "Sources of energy productivity growth and its distribution dynamics in China," Resource and Energy Economics, Elsevier, vol. 33(1), pages 279-292, January.
    15. Oleg Badunenko & Daniel J. Henderson & Valentin Zelenyuk, 2008. "Technological Change and Transition: Relative Contributions to Worldwide Growth During the 1990s," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(4), pages 461-492, August.
    16. Oleg Badunenko & Daniel Henderson & Romain Houssa, 2014. "Significant drivers of growth in Africa," Journal of Productivity Analysis, Springer, vol. 42(3), pages 339-354, December.
    17. Danny Givon, 2006. "Factor Replacement versus Factor Substitution, Mechanization and Asymptotic Harrod Neutrality," DEGIT Conference Papers c011_028, DEGIT, Dynamics, Economic Growth, and International Trade.
    18. Charles-Henri Dimaria & Chiara Peroni, 2012. "Unit labor cost and productivity recovery under non neutral technical change," Working Papers halshs-00826351, HAL.
    19. Hui He & Zheng Liu, 2008. "Investment-Specific Technological Change, Skill Accumulation, and Wage Inequality," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(2), pages 314-334, April.
    20. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:214:y:2014:i:1:p:143-165:10.1007/s10479-012-1087-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.