IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2740-d759058.html
   My bibliography  Save this article

Spatial-Temporal Evolution of Total Factor Productivity in Logistics Industry of the Yangtze River Economic Belt, China

Author

Listed:
  • Yu Mao

    (School of Economics and Management, China University of Geosciences, Wuhan 430074, China)

  • Yonglin Li

    (School of Economics and Management, China University of Geosciences, Wuhan 430074, China)

  • Deyi Xu

    (School of Economics and Management, China University of Geosciences, Wuhan 430074, China)

  • Yaqi Wu

    (School of Economics and Management, China University of Geosciences, Wuhan 430074, China)

  • Jinhua Cheng

    (School of Economics and Management, China University of Geosciences, Wuhan 430074, China)

Abstract

The logistics industry plays a great role in the sustainable economic development of the Yangtze River Economic Belt (YREB). This paper measures the total factor productivity (TFP) of the logistics industry by using the DEA-Malmquist index method and analyzes its spatial-temporal evolution characteristics based on panel data of 11 provinces and cities in the YREB in 2003–2017. Lastly, a spatial autocorrelation analysis was conducted in conjunction with the exploratory spatial data analysis (ESDA) model. The results show that the overall development of the logistics industry has been relatively good, with an inverted “N” shape trend over the years. Technological progress is the main reason for the growth of TFP. From a regional perspective, it shows a spatial distribution pattern of high in the east and low in the west, with an overall upward trend of TFP levels. The spatial correlation between the TFP levels of logistics in each province and city is gradually increasing, but coordinated development between regions is still limited. Finally, according to the conclusions, policy recommendations are proposed to accelerate the coordinated development of regional logistics and the innovative development of the modern logistics industry.

Suggested Citation

  • Yu Mao & Yonglin Li & Deyi Xu & Yaqi Wu & Jinhua Cheng, 2022. "Spatial-Temporal Evolution of Total Factor Productivity in Logistics Industry of the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2740-:d:759058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2740/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2740/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ray, Subhash C & Desli, Evangelia, 1997. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Comment," American Economic Review, American Economic Association, vol. 87(5), pages 1033-1039, December.
    2. Chen, Chien-Ming & van Dalen, Jan, 2010. "Measuring dynamic efficiency: Theories and an integrated methodology," European Journal of Operational Research, Elsevier, vol. 203(3), pages 749-760, June.
    3. Xinbao Tian & Meirong Zhang, 2019. "Research on Spatial Correlations and Influencing Factors of Logistics Industry Development Level," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    4. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Chang, Kai & Wan, Qiong & Lou, Qichun & Chen, Yili & Wang, Weihong, 2020. "Green fiscal policy and firms’ investment efficiency: New insights into firm-level panel data from the renewable energy industry in China," Renewable Energy, Elsevier, vol. 151(C), pages 589-597.
    7. Bayarsaihan, T. & Coelli, T. J., 2003. "Productivity growth in pre-1990 Mongolian agriculture: spiralling disaster or emerging success?," Agricultural Economics, Blackwell, vol. 28(2), pages 121-137, March.
    8. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    9. Hengji Li & Jiansheng Qu & Dai Wang & Peng Meng & Chenyu Lu & Jingjing Zeng, 2021. "Spatial-Temporal Integrated Measurement of the Efficiency of Urban Land Use in Yellow River Basin," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    10. Baldoni, Edoardo & Coderoni, Silvia & Esposti, Roberto, 2017. "The productivity and environment nexus with farm-level data. The Case of Carbon Footprint in Lombardy FADN farms," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 6(2), September.
    11. Wu, Shunxiang, et al, 2001. "Productivity Growth and Its Components in Chinese Agriculture after Reforms," Review of Development Economics, Wiley Blackwell, vol. 5(3), pages 375-391, October.
    12. Shunxiang Wu & David Walker & Stephen Devadoss & Yao‐chi Lu, 2001. "Productivity Growth and its Components in Chinese Agriculture after Reforms," Review of Development Economics, Wiley Blackwell, vol. 5(3), pages 375-391, October.
    13. Yining Zhang & Zhong Wu, 2021. "Intelligence and Green Total Factor Productivity Based on China’s Province-Level Manufacturing Data," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    14. Zhenxiao Xu & Yongqiang Yin, 2021. "Regional Development Quality of Yangtze River Delta: From the Perspective of Urban Population Agglomeration and Ecological Efficiency Coordination," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    15. Ying Gong & Xiao-Qiong Yang & Chun-Yan Ran & Victor Shi & Yu-Feng Zhou, 2021. "Evaluation of the Sustainable Coupling Coordination of the Logistics Industry and the Manufacturing Industry in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 13(9), pages 1-19, May.
    16. Wang, Shaobin & Liu, Haimeng & Pu, Haixia & Yang, Hao, 2020. "Spatial disparity and hierarchical cluster analysis of final energy consumption in China," Energy, Elsevier, vol. 197(C).
    17. Dan He & Jialiang Yang & Zhengming Wang & Wenchao Li, 2020. "Has the manufacturing policy helped to promote the logistics industry?," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-21, July.
    18. Asmild, Mette & Paradi, Joseph C. & Reese, David N. & Tam, Fai, 2007. "Measuring overall efficiency and effectiveness using DEA," European Journal of Operational Research, Elsevier, vol. 178(1), pages 305-321, April.
    19. Baldoni, Edoardo & Coderoni, Silvia & Esposti, Roberto, 2017. "The Productivity-environment Nexus At The Farm Level. The Case Of Carbon Footprint Of Lombardy FADN Farms," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 260895, European Association of Agricultural Economists.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Ye & Shiping Yan & Shaoying Zhu, 2022. "Growth Trends and Heterogeneity of Total Factor Productivity in Nine Pan-PRD Provinces in China," Sustainability, MDPI, vol. 14(21), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaocang Xu & Xiuquan Huang & Jun Huang & Xin Gao & Linhong Chen, 2019. "Spatial-Temporal Characteristics of Agriculture Green Total Factor Productivity in China, 1998–2016: Based on More Sophisticated Calculations of Carbon Emissions," IJERPH, MDPI, vol. 16(20), pages 1-16, October.
    2. Jens J. Krüger, 2020. "Long‐run productivity trends: A global update with a global index," Review of Development Economics, Wiley Blackwell, vol. 24(4), pages 1393-1412, November.
    3. Pontus Mattsson & Jonas Månsson & Christian Andersson & Fredrik Bonander, 2018. "A bootstrapped Malmquist index applied to Swedish district courts," European Journal of Law and Economics, Springer, vol. 46(1), pages 109-139, August.
    4. Barnabé Walheer, 2018. "Cost Malmquist productivity index: an output-specific approach for group comparison," Journal of Productivity Analysis, Springer, vol. 49(1), pages 79-94, February.
    5. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2019. "Performance comparison of management groups under centralised management," European Journal of Operational Research, Elsevier, vol. 278(3), pages 845-854.
    6. Houyem Zrelli & Abdullah H. Alsharif & Iskander Tlili, 2020. "Malmquist Indexes of Productivity Change in Tunisian Manufacturing Industries," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    7. Pastor, Jesus T. & Lovell, C.A. Knox & Aparicio, Juan, 2020. "Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index," European Journal of Operational Research, Elsevier, vol. 281(1), pages 222-230.
    8. Cheng, Xiaomei & Bjørndal, Endre & Lien, Gudbrand & Bjørndal, Mette, 2015. "Productivity Development for Norwegian Electricity Distribution Companies 2004-2013," Discussion Papers 2015/27, Norwegian School of Economics, Department of Business and Management Science.
    9. Okuda, Hidenobu & 奥田, 英信 & Poleng, Chea & Aiba, Daiju & 相場, 大樹, 2014. "Operational Efficiency and TFP Change of Major Cambodian Financial Institutions:A Data Envelopment Analysis during the 2006-2011 Period," Discussion Papers 2014-02, Graduate School of Economics, Hitotsubashi University.
    10. Mette Asmild & Fai Tam, 2007. "Estimating global frontier shifts and global Malmquist indices," Journal of Productivity Analysis, Springer, vol. 27(2), pages 137-148, April.
    11. Fernández, Ana Isabel & Gascón, Fernando & González , Eduardo, 2001. "Economic Efficiency and Value Maximization in Banking Firms," Efficiency Series Papers 2001/11, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    12. Diego Prior, 2006. "Efficiency and total quality management in health care organizations: A dynamic frontier approach," Annals of Operations Research, Springer, vol. 145(1), pages 281-299, July.
    13. Catarina Figueira & Joseph Nellis & David Parker, 2009. "Banking performance and technological change in non‐core EU countries," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 26(3), pages 155-170, July.
    14. Huichen Jiang & Yifan He, 2018. "Applying Data Envelopment Analysis in Measuring the Efficiency of Chinese Listed Banks in the Context of Macroprudential Framework," Mathematics, MDPI, vol. 6(10), pages 1-18, September.
    15. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
    16. W. Erwin Diewert & Kevin J. Fox, 2014. "Decomposing Bjurek Productivity Indexes into Explanatory Factors," Discussion Papers 2014-33, School of Economics, The University of New South Wales.
    17. Neves Bezerra de Melo, Felipe Luiz & Sampaio, Raquel Menezes Bezerra & Sampaio, Luciano Menezes Bezerra, 2018. "Efficiency, productivity gains, and the size of Brazilian supermarkets," International Journal of Production Economics, Elsevier, vol. 197(C), pages 99-111.
    18. Cristian Barra & Roberto Zotti, 2016. "Measuring Efficiency in Higher Education: An Empirical Study Using a Bootstrapped Data Envelopment Analysis," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 22(1), pages 11-33, February.
    19. Ajayi, Victor & Anaya, Karim & Pollitt, Michael, 2022. "Incentive regulation, productivity growth and environmental effects: the case of electricity networks in Great Britain," Energy Economics, Elsevier, vol. 115(C).
    20. Bhushan, S., 2016. "TFP Growth of Wheat and Paddy in Post-Green Revolution Era in India: Parametric and Non-Parametric Analysis," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 29(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2740-:d:759058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.