IDEAS home Printed from https://ideas.repec.org/a/eee/streco/v66y2023icp393-406.html
   My bibliography  Save this article

Impact of the energy transition on long-term factor productivity

Author

Listed:
  • Flament, Guillaume

Abstract

In this article, we propose to build a statistical model for factor productivity and illustrate our predictions on a common toy model : DICE. Data show that the variation of primary exergy, or simply called exergy is a good predictor of the TFP variation. That remark allows us to design new economic scenarios that respect the Paris Agreement. These scenarios are of particular interest for policy makers. Moreover, our model is capable to reconcile different projections by the introduction of environmental constraints. On one hand, if exergy increases, we have similar projections with standard economic models. On the other hand, if exergy decreases, we obtain projections closer to other Integrated Assessment Models, where economic output declines (Meadows et al., 2013; Capellán-Pérez et al., 2020).

Suggested Citation

  • Flament, Guillaume, 2023. "Impact of the energy transition on long-term factor productivity," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 393-406.
  • Handle: RePEc:eee:streco:v:66:y:2023:i:c:p:393-406
    DOI: 10.1016/j.strueco.2023.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0954349X2300084X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.strueco.2023.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santos, João & Borges, Afonso S. & Domingos, Tiago, 2021. "Exploring the links between total factor productivity and energy efficiency: Portugal, 1960–2014," Energy Economics, Elsevier, vol. 101(C).
    2. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    3. Nordhaus, William D, 1991. "To Slow or Not to Slow: The Economics of the Greenhouse Effect," Economic Journal, Royal Economic Society, vol. 101(407), pages 920-937, July.
    4. Solomon Hsiang & Robert E. Kopp, 2018. "An Economist's Guide to Climate Change Science," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 3-32, Fall.
    5. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    6. William Nordhaus, 2018. "Evolution of modeling of the economics of global warming: changes in the DICE model, 1992–2017," Climatic Change, Springer, vol. 148(4), pages 623-640, June.
    7. Daron Acemoglu & Philippe Aghion & Fabrizio Zilibotti, 2006. "Distance to Frontier, Selection, and Economic Growth," Journal of the European Economic Association, MIT Press, vol. 4(1), pages 37-74, March.
    8. Camilo Mora & Daniele Spirandelli & Erik C. Franklin & John Lynham & Michael B. Kantar & Wendy Miles & Charlotte Z. Smith & Kelle Freel & Jade Moy & Leo V. Louis & Evan W. Barba & Keith Bettinger & Ab, 2018. "Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions," Nature Climate Change, Nature, vol. 8(12), pages 1062-1071, December.
    9. Jérôme Vandenbussche & Philippe Aghion & Costas Meghir, 2006. "Growth, distance to frontier and composition of human capital," Journal of Economic Growth, Springer, vol. 11(2), pages 97-127, June.
    10. Keen, Steve & Ayres, Robert U. & Standish, Russell, 2019. "A Note on the Role of Energy in Production," Ecological Economics, Elsevier, vol. 157(C), pages 40-46.
    11. Warr, Benjamin & Ayres, Robert, 2006. "REXS: A forecasting model for assessing the impact of natural resource consumption and technological change on economic growth," Structural Change and Economic Dynamics, Elsevier, vol. 17(3), pages 329-378, September.
    12. Thompson, Henry, 2006. "The applied theory of energy substitution in production," Energy Economics, Elsevier, vol. 28(4), pages 410-425, July.
    13. Philippe Aghion & Christopher Harris & Peter Howitt & John Vickers, 2001. "Competition, Imitation and Growth with Step-by-Step Innovation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(3), pages 467-492.
    14. Martin L. Weitzman, 2012. "GHG Targets as Insurance Against Catastrophic Climate Damages," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 14(2), pages 221-244, March.
    15. Michael Barnett & William Brock & Lars Peter Hansen, 2022. "Climate Change Uncertainty Spillover in the Macroeconomy," NBER Macroeconomics Annual, University of Chicago Press, vol. 36(1), pages 253-320.
    16. Frederick van der Ploeg & Armon Rezai, 2020. "Stranded Assets in the Transition to a Carbon-Free Economy," Annual Review of Resource Economics, Annual Reviews, vol. 12(1), pages 281-298, October.
    17. Chris Papageorgiou & Marianne Saam & Patrick Schulte, 2017. "Substitution between Clean and Dirty Energy Inputs: A Macroeconomic Perspective," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 281-290, May.
    18. Pradhan, Basanta K. & Ghosh, Joydeep, 2019. "Climate policy vs. agricultural productivity shocks in a dynamic computable general equilibrium (CGE) modeling framework: The case of a developing economy," Economic Modelling, Elsevier, vol. 77(C), pages 55-69.
    19. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    20. Santos, João & Domingos, Tiago & Sousa, Tânia & St. Aubyn, Miguel, 2018. "Useful Exergy Is Key in Obtaining Plausible Aggregate Production Functions and Recognizing the Role of Energy in Economic Growth: Portugal 1960–2009," Ecological Economics, Elsevier, vol. 148(C), pages 103-120.
    21. William D. Nordhaus, 1992. "The 'DICE' Model: Background and Structure of a Dynamic Integrated Climate-Economy Model of the Economics of Global Warming," Cowles Foundation Discussion Papers 1009, Cowles Foundation for Research in Economics, Yale University.
    22. William Nordhaus, 2014. "Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 000.
    23. Bercegol, Hervé & Benisty, Henri, 2022. "An energy-based macroeconomic model validated by global historical series since 1820," Ecological Economics, Elsevier, vol. 192(C).
    24. Ayres, Robert U & Ayres, Leslie W & Warr, Benjamin, 2003. "Exergy, power and work in the US economy, 1900–1998," Energy, Elsevier, vol. 28(3), pages 219-273.
    25. Pradhan, Basanta K. & Ghosh, Joydeep, 2022. "A computable general equilibrium (CGE) assessment of technological progress and carbon pricing in India's green energy transition via furthering its renewable capacity," Energy Economics, Elsevier, vol. 106(C).
    26. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
    27. Richard S. J. Tol, 2009. "The Economic Effects of Climate Change," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 29-51, Spring.
    28. Daniel Johansson & Paul Lucas & Matthias Weitzel & Erik Ahlgren & A. Bazaz & Wenying Chen & Michel Elzen & Joydeep Ghosh & Maria Grahn & Qiao-Mei Liang & Sonja Peterson & Basanta Pradhan & Bas Ruijven, 2015. "Multi-model comparison of the economic and energy implications for China and India in an international climate regime," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1335-1359, December.
    29. Kenneth Gillingham & James H. Stock, 2018. "The Cost of Reducing Greenhouse Gas Emissions," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 53-72, Fall.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Casey, Gregory, "undated". "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259959, Agricultural and Applied Economics Association.
    2. Stephen Keen & Timothy M. Lenton & Antoine Godin & Devrim Yilmaz & Matheus Grasselli & Timothy J. Garrett, 2021. "Economists' erroneous estimates of damages from climate change," Papers 2108.07847, arXiv.org.
    3. Gros, Daniel & Alcidi, Cinzia, 2014. "The Global Economy in 2030: Trends and Strategies for Europe," CEPS Papers 9142, Centre for European Policy Studies.
    4. Bovari, Emmanuel & Giraud, Gaël & Mc Isaac, Florent, 2018. "Coping With Collapse: A Stock-Flow Consistent Monetary Macrodynamics of Global Warming," Ecological Economics, Elsevier, vol. 147(C), pages 383-398.
    5. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    6. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    7. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    8. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    9. Simon Dietz & Nicholas Stern, 2014. "Endogenous growth, convexity of damages and climate risk: how Nordhaus� framework supports deep cuts in carbon emissions," GRI Working Papers 159, Grantham Research Institute on Climate Change and the Environment.
    10. Santos, João & Borges, Afonso S. & Domingos, Tiago, 2021. "Exploring the links between total factor productivity and energy efficiency: Portugal, 1960–2014," Energy Economics, Elsevier, vol. 101(C).
    11. Tinatin Akhvlediani & Andrzej Cieślik, 2020. "Human capital, technological progress and technology diffusion across Europe: education matters," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 47(3), pages 475-493, August.
    12. Ralph Hippe, 2015. "Why did the knowledge transition occur in the West and not in the East? ICT and the role of governments in Europe, East Asia and the Muslim world," GRI Working Papers 180, Grantham Research Institute on Climate Change and the Environment.
    13. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.
    14. Oyinlola, Mutiu A. & Adedeji, Abdulfatai A. & Onitekun, Olumide, 2021. "Human capital, innovation, and inclusive growth in sub-Saharan African Region," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 609-625.
    15. Ekaterina Ponomareva & Alexandra Bozhechkova & Alexandr Knobel, 2012. "Factors of Economic Growth," Published Papers 172, Gaidar Institute for Economic Policy, revised 2013.
    16. Aramendia, Emmanuel & Brockway, Paul E. & Pizzol, Massimo & Heun, Matthew K., 2021. "Moving from final to useful stage in energy-economy analysis: A critical assessment," Applied Energy, Elsevier, vol. 283(C).
    17. Marco Letta & Richard S. J. Tol, 2019. "Weather, Climate and Total Factor Productivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(1), pages 283-305, May.
    18. Santos, João & Borges, Afonso & Domingos, Tiago, 2020. "Exploring the links between total factor productivity, final-to-useful exergy efficiency, and economic growth: Case study Portugal 1960-2014," MPRA Paper 100214, University Library of Munich, Germany.
    19. Marattin, Luigi & Marzo, Massimiliano & Zagaglia, Paolo, 2013. "Distortionary tax instruments and implementable monetary policy," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 219-243.
    20. Dietz, Simon & Gollier, Christian & Kessler, Louise, 2018. "The climate beta," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 258-274.

    More about this item

    Keywords

    Long term scenario; Growth; Global warming; Macroeconomic scenarios;
    All these keywords.

    JEL classification:

    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:streco:v:66:y:2023:i:c:p:393-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/525148 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.