IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v8y2018i12d10.1038_s41558-018-0315-6.html
   My bibliography  Save this article

Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions

Author

Listed:
  • Camilo Mora

    (University of Hawai‘i at Mānoa)

  • Daniele Spirandelli

    (University of Hawai‘i at Mānoa
    University of Hawai‘i at Mānoa)

  • Erik C. Franklin

    (University of Hawai‘i at Mānoa
    University of Hawai‘i at Mānoa)

  • John Lynham

    (University of Hawai‘i at Mānoa
    University of Hawai‘i at Mānoa)

  • Michael B. Kantar

    (University of Hawai‘i at Mānoa)

  • Wendy Miles

    (Pacific Islands Climate Change Cooperative
    University of Hawai‘i at Mānoa)

  • Charlotte Z. Smith

    (University of Hawai‘i at Mānoa)

  • Kelle Freel

    (University of Hawai‘i at Mānoa)

  • Jade Moy

    (University of Hawai‘i at Mānoa)

  • Leo V. Louis

    (Cornell University)

  • Evan W. Barba

    (University of Hawai‘i at Mānoa)

  • Keith Bettinger

    (East-West Center)

  • Abby G. Frazier

    (East-West Center
    USDA Forest Service)

  • John F. Colburn IX

    (University of Hawai‘i at Mānoa)

  • Naota Hanasaki

    (National Institute for Environmental Studies)

  • Ed Hawkins

    (University of Reading)

  • Yukiko Hirabayashi

    (Shibaura Institute of Technology)

  • Wolfgang Knorr

    (Lund University)

  • Christopher M. Little

    (Atmospheric and Environmental Research, Inc.)

  • Kerry Emanuel

    (Massachusetts Institute of Technology)

  • Justin Sheffield

    (University of Southampton
    Princeton University)

  • Jonathan A. Patz

    (University of Wisconsin)

  • Cynthia L. Hunter

    (University of Hawai‘i at Mānoa)

Abstract

The ongoing emission of greenhouse gases (GHGs) is triggering changes in many climate hazards that can impact humanity. We found traceable evidence for 467 pathways by which human health, water, food, economy, infrastructure and security have been recently impacted by climate hazards such as warming, heatwaves, precipitation, drought, floods, fires, storms, sea-level rise and changes in natural land cover and ocean chemistry. By 2100, the world’s population will be exposed concurrently to the equivalent of the largest magnitude in one of these hazards if emmisions are aggressively reduced, or three if they are not, with some tropical coastal areas facing up to six simultaneous hazards. These findings highlight the fact that GHG emissions pose a broad threat to humanity by intensifying multiple hazards to which humanity is vulnerable.

Suggested Citation

  • Camilo Mora & Daniele Spirandelli & Erik C. Franklin & John Lynham & Michael B. Kantar & Wendy Miles & Charlotte Z. Smith & Kelle Freel & Jade Moy & Leo V. Louis & Evan W. Barba & Keith Bettinger & Ab, 2018. "Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions," Nature Climate Change, Nature, vol. 8(12), pages 1062-1071, December.
  • Handle: RePEc:nat:natcli:v:8:y:2018:i:12:d:10.1038_s41558-018-0315-6
    DOI: 10.1038/s41558-018-0315-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-018-0315-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-018-0315-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scott, Daniel & Gössling, Stefan, 2022. "A review of research into tourism and climate change - Launching the annals of tourism research curated collection on tourism and climate change," Annals of Tourism Research, Elsevier, vol. 95(C).
    2. James, Christina Anne & Kavanagh, Marie & Manton, Carl & Soar, Jeffrey, 2023. "Revisiting recycled water for the next drought; a case study of South East Queensland, Australia," Utilities Policy, Elsevier, vol. 84(C).
    3. Yang, Xin & Wei, Luohan & Deng, Rantian & Cao, Jie & Huang, Chuangxia, 2023. "Can climate-related risks increase audit fees?–Evidence from China," Finance Research Letters, Elsevier, vol. 57(C).
    4. Zhong, Shen & Li, Junwei & Qu, Yi, 2022. "Green total factor productivity of dairy cow in China: Key facts from scale and regional sector," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    5. Chen, Jiandong & Xu, Chong & Huang, Shuo & Shen, Zhiyang & Song, Malin & Wang, Shiqi, 2022. "Adjusted carbon intensity in China: Trend, driver, and network," Energy, Elsevier, vol. 251(C).
    6. Barbour, Emily J. & Sarfaraz Gani Adnan, Mohammed & Borgomeo, Edoardo & Paprocki, Kasia & Shah Alam Khan, M. & Salehin, Mashfiqus & W. Hall, Jim, 2022. "The unequal distribution of water risks and adaptation benefits in coastal Bangladesh," LSE Research Online Documents on Economics 113320, London School of Economics and Political Science, LSE Library.
    7. Wang, Junbo & Ma, Zhenyu & Fan, Xiayang, 2023. "We are all in the same boat: The welfare and carbon abatement effects of the EU carbon border adjustment mechanism," MPRA Paper 118978, University Library of Munich, Germany.
    8. Jean-Baptiste Gaudemet & Jules Deschamps & Olivier Vinciguerra, 2022. "A Stochastic Climate Model -- An approach to calibrate the Climate-Extended Risk Model (CERM)," Papers 2205.02581, arXiv.org.
    9. Yang, Hanmin & Cui, Yuxiao & Han, Tong & Sandström, Linda & Jönsson, Pär & Yang, Weihong, 2022. "High-purity syngas production by cascaded catalytic reforming of biomass pyrolysis vapors," Applied Energy, Elsevier, vol. 322(C).
    10. John E. Gordon, 2023. "Climate Change and Geotourism: Impacts, Challenges, and Opportunities," Tourism and Hospitality, MDPI, vol. 4(4), pages 1-25, September.
    11. Wang, Yanwei & Dai, Zhenxue & Chen, Li & Shen, Xudong & Chen, Fangxuan & Soltanian, Mohamad Reza, 2023. "An integrated multi-scale model for CO2 transport and storage in shale reservoirs," Applied Energy, Elsevier, vol. 331(C).
    12. Flament, Guillaume, 2023. "Impact of the energy transition on long-term factor productivity," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 393-406.
    13. Onifade, Stephen Taiwo, 2023. "Environmental impacts of energy indicators on ecological footprints of oil-exporting African countries: Perspectives on fossil resources abundance amidst sustainable development quests," Resources Policy, Elsevier, vol. 82(C).
    14. Wang, Liang & Lin, Xipeng & Zhang, Han & Peng, Long & Ling, Haoshu & Zhang, Shuang & Chen, Haisheng, 2023. "Thermodynamic analysis and optimization of pumped thermal–liquid air energy storage (PTLAES)," Applied Energy, Elsevier, vol. 332(C).
    15. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    16. Luca A. Panzone & Natasha Auch & Daniel John Zizzo, 2024. "Nudging the Food Basket Green: The Effects of Commitment and Badges on the Carbon Footprint of Food Shopping," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(1), pages 89-133, January.
    17. Haqiqi, Iman & Grogan, Danielle S. & Bahalou Horeh, Marziyeh & Liu, Jing & Baldos, Uris Lantz & Hertel, Thomas, 2021. "Environmental Stressors Can Intensify the Impacts of Pandemics on Earth’s Natural Resources and Global Food Systems," Conference papers 333278, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Choe, Changgwon & Cheon, Seunghyun & Kim, Heehyang & Lim, Hankwon, 2023. "Mitigating climate change for negative CO2 emission via syngas methanation: Techno-economic and life-cycle assessments of renewable methane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    19. Ding, Jinxiu & Lu, Zhe & Yu, Chin-Hsien, 2022. "Environmental information disclosure and firms’ green innovation: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 81(C), pages 147-159.
    20. Abatayo, Anna Lou & Lynham, John, 2023. "Resource booms and group punishment in a coupled social-ecological system," Ecological Economics, Elsevier, vol. 206(C).
    21. Chmielewska Anna & Sławiński Andrzej, 2021. "Climate crisis, central banks and the IMF reform," Economics and Business Review, Sciendo, vol. 7(4), pages 7-27, December.
    22. Audrey Brouillet & Sylvie Joussaume, 2020. "More perceived but not faster evolution of heat stress than temperature extremes in the future," Climatic Change, Springer, vol. 162(2), pages 527-544, September.
    23. Longhui Li & Yue Zhang & Tianjun Zhou & Kaicun Wang & Can Wang & Tao Wang & Linwang Yuan & Kangxin An & Chenghu Zhou & Guonian Lü, 2022. "Mitigation of China’s carbon neutrality to global warming," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    24. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    25. Yanqing Xu & Yan Liu & Ruidun Chen & Yifei Meng & Kenan Li & Cong Fu, 2023. "Study on the spatio-temporal evolution characteristics and driving mechanism of China’s carbon emissions," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:8:y:2018:i:12:d:10.1038_s41558-018-0315-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.