IDEAS home Printed from https://ideas.repec.org/a/eee/jfpoli/v59y2016icp24-33.html
   My bibliography  Save this article

Dynamics of variety change on wheat farms in Pakistan: A duration analysis

Author

Listed:
  • Nazli, Hina
  • Smale, Melinda

Abstract

Decades after the Green Revolution, sustaining wheat productivity remains an important policy goal for the government of Pakistan. Understanding the speed of diffusion of new wheat varieties can contribute to this goal. We apply duration analysis to identify the factors that shorten the time until a farmer replaces one modern variety by another, and test hypotheses concerning two recurring themes of the Green Revolution: farm size differences and the role of information sources in seed diffusion. We find that time to adoption averages only 4years, but is shorter on larger farms. Factors that speed variety change also differ by farm size. Extension and media sources of information significantly influence adoption among larger farmers relative to information gained through social relationships, but this is not the case for marginal farmers. Traits related to consumption quality speed adoption on smaller wheat farms, where families both sell and consume their wheat; higher yields drive adoption for the most subsistence-oriented, marginal group.

Suggested Citation

  • Nazli, Hina & Smale, Melinda, 2016. "Dynamics of variety change on wheat farms in Pakistan: A duration analysis," Food Policy, Elsevier, vol. 59(C), pages 24-33.
  • Handle: RePEc:eee:jfpoli:v:59:y:2016:i:c:p:24-33
    DOI: 10.1016/j.foodpol.2015.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306919215001463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.foodpol.2015.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lindner, R. & Fischer, A. & Pardey, P., 1979. "The time to adoption," Economics Letters, Elsevier, vol. 2(2), pages 187-190.
    2. Smale, Melinda & Bellon, Mauricio R & Aguirre Gomez, Jose Alfonso, 2001. "Maize Diversity, Variety Attributes, and Farmers' Choices in Southeastern Guanajuato, Mexico," Economic Development and Cultural Change, University of Chicago Press, vol. 50(1), pages 201-225, October.
    3. Foster, Andrew D & Rosenzweig, Mark R, 1995. "Learning by Doing and Learning from Others: Human Capital and Technical Change in Agriculture," Journal of Political Economy, University of Chicago Press, vol. 103(6), pages 1176-1209, December.
    4. Oriana Bandiera & Imran Rasul, 2006. "Social Networks and Technology Adoption in Northern Mozambique," Economic Journal, Royal Economic Society, vol. 116(514), pages 869-902, October.
    5. Keith O. Fuglie & Catherine A. Kascak, 2001. "Adoption and Diffusion of Natural-Resource-Conserving Agricultural Technology," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 23(2), pages 386-403.
    6. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    7. Adesina, Akinwumi A. & Zinnah, Moses M., 1993. "Technology characteristics, farmers' perceptions and adoption decisions: A Tobit model application in Sierra Leone," Agricultural Economics, Blackwell, vol. 9(4), pages 297-311, December.
    8. Hintze, L. H. & Renkow, M. & Sain, G., 2003. "Variety characteristics and maize adoption in Honduras," Agricultural Economics, Blackwell, vol. 29(3), pages 307-317, December.
    9. Muhammad Iqbal & M. Azeem Khan & Munir Ahmad, 2002. "Adoption of Recommended Varieties: A Farm-level Analysis of Wheat Growers in Irrigated Punjab," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 41(1), pages 29-48.
    10. Munshi, Kaivan, 2004. "Social learning in a heterogeneous population: technology diffusion in the Indian Green Revolution," Journal of Development Economics, Elsevier, vol. 73(1), pages 185-213, February.
    11. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460, Elsevier.
    12. Renkow, Mitch, 2000. "Poverty, productivity and production environment:: a review of the evidence," Food Policy, Elsevier, vol. 25(4), pages 463-478, August.
    13. Lapar, Ma. Lucila A. & Pandey, Sushil, 1999. "Adoption of soil conservation: the case of the Philippine uplands," Agricultural Economics, Blackwell, vol. 21(3), pages 241-256, December.
    14. Hussain, Syed Sajidin & Byerlee, Derek & Heisey, Paul W., 1994. "Impacts of the training and visit extension system on farmers' knowledge and adoption of technology: Evidence from Pakistan," Agricultural Economics, Blackwell, vol. 10(1), pages 39-47, January.
    15. Ma, Xingliang & Spielman, David J. & Nazli, Hina & Zambrano, Patricia & Zaidi, Fatima & Kouser, Shahzad, 2014. "The role of social networks in an imperfect market for agricultural technology products: Evidence on Bt cotton adoption in Pakistan," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 175276, Agricultural and Applied Economics Association.
    16. Michael Burton & Dan Rigby & Trevor Young, 2003. "Modelling the adoption of organic horticultural technology in the UK using Duration Analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(1), pages 29-54, March.
    17. Just, Richard E & Zilberman, David, 1983. "Stochastic Structure, Farm Size and Technology Adoption in Developing Agriculture," Oxford Economic Papers, Oxford University Press, vol. 35(2), pages 307-328, July.
    18. Gershon Feder & Roger Slade, 1984. "The Acquisition of Information and the Adoption of New Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 312-320.
    19. Kiefer, Nicholas M, 1988. "Economic Duration Data and Hazard Functions," Journal of Economic Literature, American Economic Association, vol. 26(2), pages 646-679, June.
    20. Ma. Lucila A. Lapar & Sushil Pandey, 1999. "Adoption of soil conservation: the case of the Philippine uplands," Agricultural Economics, International Association of Agricultural Economists, vol. 21(3), pages 241-256, December.
    21. Leggesse Dadi & Michael Burton & Adam Ozanne, 2004. "Duration Analysis of Technological Adoption in Ethiopian Agriculture," Journal of Agricultural Economics, Wiley Blackwell, vol. 55(3), pages 613-631, November.
    22. Akinwumi A. Adesina & Moses M. Zinnah, 1993. "Technology characteristics, farmers' perceptions and adoption decisions: A Tobit model application in Sierra Leone," Agricultural Economics, International Association of Agricultural Economists, vol. 9(4), pages 297-311, December.
    23. Otieno, Zipora & Okello, Julius J. & Nyikal, Rose & Mwang'ombe, Agnes & Clavel, Daniele, 2011. "The role of varietal traits in the adoption of improved dryland crop varieties: The case of pigeon pea in Kenya," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 6(2), pages 1-18, September.
    24. Umar Farooq & Muhammad Iqbal, 2000. "Attaining and Maintaining Self-sufficiency in Wheat Production: Institutional Efforts and Farmers’ Limitations," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 39(4), pages 487-514.
    25. Gershon Feder & Gerald T. O'Mara, 1982. "On Information and Innovation Diffusion: A Bayesian Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(1), pages 145-147.
    26. Svetlana Edmeades & Melinda Smale, 2006. "A trait‐based model of the potential demand for a genetically engineered food crop in a developing economy," Agricultural Economics, International Association of Agricultural Economists, vol. 35(3), pages 351-361, November.
    27. Awudu Abdulai & Wallace E. Huffman, 2005. "The Diffusion of New Agricultural Technologies: The Case of Crossbred-Cow Technology in Tanzania," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(3), pages 645-659.
    28. Pilar Useche & Bradford L. Barham & Jeremy D. Foltz, 2013. "Trait-based Adoption Models Using Ex-Ante and Ex-Post Approaches," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 332-338.
    29. Howard D. Leathers & Melinda Smale, 1991. "A Bayesian Approach to Explaining Sequential Adoption of Components of a Technological Package," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(3), pages 734-742.
    30. Derek Byerlee & Edward Souza, 1997. "Wheat Rusts and the Costs of Genetic Diversity in the Punjab of Pakistan," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(3), pages 726-737.
    31. Syed Sajidin Hussain & Derek Byerlee & Paul W. Heisey, 1994. "Impacts of the training and visit extension system on farmers' knowledge and adoption of technology: Evidence from Pakistan," Agricultural Economics, International Association of Agricultural Economists, vol. 10(1), pages 39-47, January.
    32. Ira Matuschke & Matin Qaim, 2008. "Seed Market Privatisation and Farmers’ Access to Crop Technologies: The Case of Hybrid Pearl Millet Adoption in India," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(3), pages 498-515, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vaiknoras, Kate A. & Larochelle, Catherine & Birol, Ekin & Asare-Marfo, Dorene & Herrington, Caitlin, 2017. "The Roles of Formal and Informal Delivery Approaches in Achieving Fast and Sustained Adoption of Biofortified Crops: Learnings from the Iron Bean Delivery Approaches in Rwanda," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258288, Agricultural and Applied Economics Association.
    2. Adam Salifu & Godwin Seyram Agbemavor Horlu, 2022. "Nonfarm employment and mobility of farmers into different income groups: evidence from rural Ghana," SN Business & Economics, Springer, vol. 2(1), pages 1-25, January.
    3. Manda, Julius & Khonje, Makaiko G. & Alene, Arega D. & Tufa, Adane H & Abdoulaye, Tahirou & Mutenje, Munyaradzi & Setimela, Peter & Manyong, Victor, 2020. "Does cooperative membership increase and accelerate agricultural technology adoption? Empirical evidence from Zambia," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    4. Crentsil, Christian & Gschwandtner, Adelina & Wahhaj, Zaki, 2020. "The effects of risk and ambiguity aversion on technology adoption: Evidence from aquaculture in Ghana," Journal of Economic Behavior & Organization, Elsevier, vol. 179(C), pages 46-68.
    5. Lu, Wencong & Horlu, Godwin Seyram Agbemavor Kwasi, 2019. "Transition of small farms in Ghana: perspectives of farm heritage, employment and networks," Land Use Policy, Elsevier, vol. 81(C), pages 434-452.
    6. Vaiknoras, Kate & Larochelle, Catherine & Birol, Ekin & Asare-Marfo, Dorene & Herrington, Caitlin, 2019. "Promoting rapid and sustained adoption of biofortified crops: What we learned from iron-biofortified bean delivery approaches in Rwanda," Food Policy, Elsevier, vol. 83(C), pages 271-284.
    7. Yi Chen & Zhengbing Wang, 2023. "The Impact of Land Transfers on the Adoption of New Varieties: Evidence from Micro-Survey Data in Shaanxi Province, China," Land, MDPI, vol. 12(3), pages 1-23, March.
    8. Bashiru Mansaray & Shaosheng Jin & Godwin S. Agbemavor Horlu, 2019. "Do Land Ownership and Agro-Ecological Location of Farmland Influence Adoption of Improved Rice Varieties? Evidence from Sierra Leone," Agriculture, MDPI, vol. 9(12), pages 1-20, December.
    9. Blanca Isabel Sánchez-Toledano & Zein Kallas & Oscar Palmeros Rojas & José M. Gil, 2018. "Determinant Factors of the Adoption of Improved Maize Seeds in Southern Mexico: A Survival Analysis Approach," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    10. Permadi, Dwiko B. & Burton, Michael & Pandit, Ram & Race, Digby & Ma, Chunbo & Mendham, Daniel & Hardiyanto, Eko B., 2018. "Socio-economic factors affecting the rate of adoption of acacia plantations by smallholders in Indonesia," Land Use Policy, Elsevier, vol. 76(C), pages 215-223.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vaiknoras, Kate A. & Larochelle, Catherine & Birol, Ekin & Asare-Marfo, Dorene & Herrington, Caitlin, 2017. "The Roles of Formal and Informal Delivery Approaches in Achieving Fast and Sustained Adoption of Biofortified Crops: Learnings from the Iron Bean Delivery Approaches in Rwanda," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258288, Agricultural and Applied Economics Association.
    2. Joshi, Kuhu & Joshi, Pramod Kumar & Khan, Md. Tajuddin & Kishore, Avinash, 2018. "Insights on the rapid adoption of Pusa 1121 basmati variety in North India," IFPRI discussion papers 1756, International Food Policy Research Institute (IFPRI).
    3. Crentsil, Christian & Gschwandtner, Adelina & Wahhaj, Zaki, 2020. "The effects of risk and ambiguity aversion on technology adoption: Evidence from aquaculture in Ghana," Journal of Economic Behavior & Organization, Elsevier, vol. 179(C), pages 46-68.
    4. Ahsanuzzaman, Ahsanuzzaman, 2015. "Duration Analysis of Technology Adoption in Bangladeshi Agriculture," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 200406, Agricultural and Applied Economics Association.
    5. Alcon, Francisco & De Miguel, María Dolores & Burton, Michael P., 2008. "Adopción de tecnología de distribución y control del agua en las Comunidades de Regantes de la Región de Murcia," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 8(01), pages 1-19.
    6. Margarita Genius & Christos Pantzios & Vangelis Tzouvelekas, 2003. "Information Acquisition and Adoption of Organic Farming Practices: Evidence from Farm Operations in Crete, Greece," Working Papers 0305, University of Crete, Department of Economics.
    7. Langyintuo, Augustine S. & Mungoma, Catherine, 2008. "The effect of household wealth on the adoption of improved maize varieties in Zambia," Food Policy, Elsevier, vol. 33(6), pages 550-559, December.
    8. Burton, Michael P. & Rigby, Dan & Young, Trevor, 2003. "Modelling the adoption of organic horticultural technology in the UK using Duration Analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(1), pages 1-26, March.
    9. Schipmann, Christin & Qaim, Matin, 2009. "Modern Supply Chains and Product Innovation: How Can Smallholder Farmers Benefit?," 2009 Conference, August 16-22, 2009, Beijing, China 51046, International Association of Agricultural Economists.
    10. Kenneth, Akankwasa & Gerald, Ortmann & Edilegnaw, Wale & Wilberforce, Tushemereirwe, 2012. "Ex-Ante Adoption of New Cooking Banana (Matooke) Hybrids in Uganda Based on Farmers' Perceptions," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 123302, International Association of Agricultural Economists.
    11. Boris Bravo & Horacio Cocchi & Daniel Solís, 2006. "Adoption of Soil Conservation Technologies in El Salvador: A cross-Section and Over-Time Analysis," OVE Working Papers 1806, Inter-American Development Bank, Office of Evaluation and Oversight (OVE).
    12. Odendo, Martins & Obare, Gideon A. & Salasya, Beatrice, 2010. "Determinants of the Speed of Adoption of Soil Fertility-Enhancing Technologies in Western Kenya," 2010 AAAE Third Conference/AEASA 48th Conference, September 19-23, 2010, Cape Town, South Africa 96192, African Association of Agricultural Economists (AAAE).
    13. Josephson, Anna & Ricker-Gilbert, Jacob, 2020. "Preferences and crop choice during Zimbabwe’s macroeconomic crisis," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 15(3), September.
    14. Arslan, Aslihan & Belotti, Federico & Lipper, Leslie, 2017. "Smallholder productivity and weather shocks: Adoption and impact of widely promoted agricultural practices in Tanzania," Food Policy, Elsevier, vol. 69(C), pages 68-81.
    15. Ayu Pratiwi & Aya Suzuki, 2020. "Does training location matter? Evidence from a randomized field experiment in Rural Indonesia," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 8(1), pages 1-23, December.
    16. Zein Kallas & Teresa Serra & José Maria Gil, 2010. "Farmers’ objectives as determinants of organic farming adoption: the case of Catalonian vineyard production," Agricultural Economics, International Association of Agricultural Economists, vol. 41(5), pages 409-423, September.
    17. Ira Matuschke & Matin Qaim, 2008. "Seed Market Privatisation and Farmers’ Access to Crop Technologies: The Case of Hybrid Pearl Millet Adoption in India," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(3), pages 498-515, September.
    18. B Kelsey Jack, "undated". "Market Inefficiencies and the Adoption of Agricultural Technologies in Developing Countries," CID Working Papers 50, Center for International Development at Harvard University.
    19. Varshney, Deepak & Joshi, P. K. & Kumar, A. & Mishra, A. K. & Dubey, S. K., 2022. "Examining the transfer of knowledge and training to smallholders in India: direct and spillover effects of agricultural advisory services in an emerging economy," Papers published in Journals (Open Access), International Water Management Institute, pages 160:106067..
    20. Marra, Michele & Pannell, David J. & Abadi Ghadim, Amir, 2003. "The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: where are we on the learning curve?," Agricultural Systems, Elsevier, vol. 75(2-3), pages 215-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfpoli:v:59:y:2016:i:c:p:24-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/foodpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.