IDEAS home Printed from https://ideas.repec.org/p/aue/wpaper/1319.html
   My bibliography  Save this paper

Information Spillovers in Irrigation Technology Diffusion: Social Learning, Extension Visits and Spatial Effects

Author

Listed:
  • Margarita Genius

    (Department of Economics, University of Crete)

  • Phoebe Koundouri
  • Celine Nauges
  • Vangelis TZOUVELEKAS

Abstract

In this article we investigate the role of information spillovers in promoting irrigation technology adoption and diffusion. In particular, we investigate the effect of different channels of information spillovers, namely informal social learning and formal extension services, while acknowledging that this effect is a function of farm-speci c spatial, environmental and socioeconomic characteristics, the latter including the efficient identification of the farmers' influential peers. For doing so, we develop a theoretical model of irrigation technology adoption and diffusion, which we then empirically apply using duration analysis on a micro-dataset of olive producing farms in Crete. Because unobserved variables are potentially relevant for quantifying the effect of information provision (formal and informal) we use observable indicators in a factor analytic model to proxy the unobserved latent variables used in our econometric estimation of the duration model. To the best of our knowledge, this is the first paper that brings together, both theoretically and empirically,three strands of the adoption and diffusion literature: (i) the literature on social learning, (ii) the literature on extension services, while (iii) proposing an econometric approximation of the involved unobserved variables that crucially contribute in the identification of informational cascades among rural population. The paper concludes with policy recommendations based on our empirical results, which suggest that both formal and informal information spillovers are strong determinants of technology adoption and diffusion.

Suggested Citation

  • Margarita Genius & Phoebe Koundouri & Celine Nauges & Vangelis TZOUVELEKAS, 2013. "Information Spillovers in Irrigation Technology Diffusion: Social Learning, Extension Visits and Spatial Effects," DEOS Working Papers 1319, Athens University of Economics and Business.
  • Handle: RePEc:aue:wpaper:1319
    as

    Download full text from publisher

    File URL: http://wpa.deos.aueb.gr/docs/Information.Spillovers.in.Irrigation.Technology.Diffusion.pdf
    File Function: First version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massoud Karshenas & Paul L. Stoneman, 1993. "Rank, Stock, Order, and Epidemic Effects in the Diffusion of New Process Technologies: An Empirical Model," RAND Journal of Economics, The RAND Corporation, vol. 24(4), pages 503-528, Winter.
    2. Awudu Abdulai & Wallace E. Huffman, 2005. "The Diffusion of New Agricultural Technologies: The Case of Crossbred-Cow Technology in Tanzania," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(3), pages 645-659.
    3. Ben Groom & Phoebe Koundouri & Celine Nauges & Alban Thomas, 2008. "The story of the moment: risk averse cypriot farmers respond to drought management," Applied Economics, Taylor & Francis Journals, vol. 40(3), pages 315-326.
    4. Woittiez, Isolde & Kapteyn, Arie, 1998. "Social interactions and habit formation in a model of female labour supply," Journal of Public Economics, Elsevier, vol. 70(2), pages 185-205, November.
    5. David Gisselquist & John Nash & Carl Pray, 2002. "Deregulating the Transfer of Agricultural Technology: Lessons from Bangladesh, India, Turkey, and Zimbabwe," The World Bank Research Observer, World Bank, vol. 17(2), pages 237-265, September.
    6. Birkhaeuser, Dean & Evenson, Robert E & Feder, Gershon, 1991. "The Economic Impact of Agricultural Extension: A Review," Economic Development and Cultural Change, University of Chicago Press, vol. 39(3), pages 607-650, April.
    7. Huffman, Wallace E & Mercier, Stephanie, 1991. "Joint Adoption of Microcomputer Technologies: An Analysis of Farmers' Decisions," The Review of Economics and Statistics, MIT Press, vol. 73(3), pages 541-546, August.
    8. Foster, Andrew D & Rosenzweig, Mark R, 1995. "Learning by Doing and Learning from Others: Human Capital and Technical Change in Agriculture," Journal of Political Economy, University of Chicago Press, vol. 103(6), pages 1176-1209, December.
    9. World Bank, 2006. "Enhancing Agricultural Innovation," World Bank Publications - Reports 24105, The World Bank Group.
    10. Just, Richard E & Zilberman, David, 1983. "Stochastic Structure, Farm Size and Technology Adoption in Developing Agriculture," Oxford Economic Papers, Oxford University Press, vol. 35(2), pages 307-328, July.
    11. Saha Atanu & H. Alan Love & Robert Schwart, 1994. "Adoption of Emerging Technologies Under Output Uncertainty," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(4), pages 836-846.
    12. Timothy G. Conley & Christopher R. Udry, 2010. "Learning about a New Technology: Pineapple in Ghana," American Economic Review, American Economic Association, vol. 100(1), pages 35-69, March.
    13. Suzi Kerr & Richard G. Newell, 2003. "Policy‐Induced Technology Adoption: Evidence from the U.S. Lead Phasedown," Journal of Industrial Economics, Wiley Blackwell, vol. 51(3), pages 317-343, September.
    14. Evenson, Robert E. & Westphal, Larry E., 1995. "Technological change and technology strategy," Handbook of Development Economics, in: Hollis Chenery & T.N. Srinivasan (ed.), Handbook of Development Economics, edition 1, volume 3, chapter 37, pages 2209-2299, Elsevier.
    15. Chokri Dridi & Madhu Khanna, 2005. "Irrigation Technology Adoption and Gains from Water Trading under Asymmetric Information," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(2), pages 289-301.
    16. Margriet F. Caswell & David Zilberman, 1986. "The Effects of Well Depth and Land Quality on the Choice of Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 798-811.
    17. Michael R. Rahm & Wallace E. Huffman, 1984. "The Adoption of Reduced Tillage: The Role of Human Capital and Other Variables," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(4), pages 405-413.
    18. Ariel Dinar & Mark Campbell & David Zilberman, 1992. "Adoption of improved irrigation and drainage reduction technologies under limiting environmental conditions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(4), pages 373-398, July.
    19. Pereira, Antonio Roberto & Green, Steve & Villa Nova, Nilson Augusto, 2006. "Penman-Monteith reference evapotranspiration adapted to estimate irrigated tree transpiration," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 153-161, May.
    20. Munshi, Kaivan, 2004. "Social learning in a heterogeneous population: technology diffusion in the Indian Green Revolution," Journal of Development Economics, Elsevier, vol. 73(1), pages 185-213, February.
    21. Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2006. "Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 657-670.
    22. Jean-Philippe Gervais & Rémy Lambert & François Boutin-Dufresne, 2001. "On the Demand for Information Services: An Application to Lowbush Blueberry Producers in Eastern Canada," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 49(2), pages 217-232, July.
    23. Jeremy G. Weber, 2012. "Social learning and technology adoption: the case of coffee pruning in Peru," Agricultural Economics, International Association of Agricultural Economists, vol. 43, pages 73-84, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faruque As Sunny & Linlin Fu & Md Sadique Rahman & Zuhui Huang, 2022. "Determinants and Impact of Solar Irrigation Facility (SIF) Adoption: A Case Study in Northern Bangladesh," Energies, MDPI, vol. 15(7), pages 1-17, March.
    2. Yaqin Ren & Hui Feng & Tianzhi Gao, 2023. "Risk Cognition, Social Learning, and Farmers’ Adoption of Conservation Agriculture Technology," Agriculture, MDPI, vol. 13(8), pages 1-15, August.
    3. Dakuan Qiao & Lei Luo & Chenyang Zhou & Xinhong Fu, 2023. "The influence of social learning on Chinese farmers’ adoption of green pest control: mediation by environmental literacy and moderation by market conditions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 13305-13330, November.
    4. Gbêtondji Melaine Armel Nonvide, 2021. "Adoption of agricultural technologies among rice farmers in Benin," Review of Development Economics, Wiley Blackwell, vol. 25(4), pages 2372-2390, November.
    5. Mani Rouhi Rad & Taro Mieno & Nicholas Brozović, 2022. "The Role of Search Frictions and Trading Ratios in Tradable Permit Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(1), pages 101-132, May.
    6. Seungki Lee & GianCarlo Moschini, 2022. "On the value of innovation and extension information: SCN‐resistant soybean varieties," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1177-1202, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Margarita Genius & Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2014. "Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 328-344.
    2. KOUNDOURI Phoebe & NAUGES Céline & TZOUVELEKAS Vangelis, 2009. "The Effect Of Production Uncertainty And Information Dissemination On The Diffusion Of Irrigation Technologies," LERNA Working Papers 09.06.282, LERNA, University of Toulouse.
    3. Chatzimichael, Konstantinos & Genius, Margarita & Tzouvelekas, Vangelis, 2014. "Informational cascades and technology adoption: Evidence from Greek and German organic growers," Food Policy, Elsevier, vol. 49(P1), pages 186-195.
    4. Lim, Krisha & Wichmann, Bruno & Luckert, Martin, 2021. "Adaptation, spatial effects, and targeting: Evidence from Africa and Asia," World Development, Elsevier, vol. 139(C).
    5. Margarita Genius & Christos Pantzios & Vangelis Tzouvelekas, 2003. "Information Acquisition and Adoption of Organic Farming Practices: Evidence from Farm Operations in Crete, Greece," Working Papers 0305, University of Crete, Department of Economics.
    6. Vaiknoras, Kate A. & Larochelle, Catherine & Birol, Ekin & Asare-Marfo, Dorene & Herrington, Caitlin, 2017. "The Roles of Formal and Informal Delivery Approaches in Achieving Fast and Sustained Adoption of Biofortified Crops: Learnings from the Iron Bean Delivery Approaches in Rwanda," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258288, Agricultural and Applied Economics Association.
    7. Feng, Yao, 2011. "Local spillovers and learning from neighbors: Evidence from durable adoptions in rural China," MPRA Paper 33924, University Library of Munich, Germany.
    8. Zhang, Biao & Fu, Zetian & Wang, Jieqiong & Zhang, Lingxian, 2019. "Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 349-357.
    9. Timothy G. Conley & Christopher R. Udry, 2010. "Learning about a New Technology: Pineapple in Ghana," American Economic Review, American Economic Association, vol. 100(1), pages 35-69, March.
    10. Tisorn Songsermsawas & Kathy Baylis & Ashwini Chhatre & Hope Michelson, 2014. "Can Peers Improve Agricultural Productivity?," CESifo Working Paper Series 4958, CESifo.
    11. Stevens, Andrew W., 2018. "Review: The economics of soil health," Food Policy, Elsevier, vol. 80(C), pages 1-9.
    12. Sauer, J. & Zilbermann, D., 2010. "Innovation Behaviour At Farm Level – Selection And Identification," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 45, March.
    13. Sauer, Johannes & Zilberman, David, 2009. "Innovation behaviour at micro level - selection and identification," CUDARE Working Papers 120636, University of California, Berkeley, Department of Agricultural and Resource Economics.
    14. Gin, Xavier & Yang, Dean, 2009. "Insurance, credit, and technology adoption: Field experimental evidencefrom Malawi," Journal of Development Economics, Elsevier, vol. 89(1), pages 1-11, May.
    15. Anna Folke Larsen, 2015. "The network at work: Diffusion of banana cultivation in Tanzania," CAM Working Papers camwp2015_01, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    16. Kaustia, Markku & Rantala, Ville, 2015. "Social learning and corporate peer effects," Journal of Financial Economics, Elsevier, vol. 117(3), pages 653-669.
    17. B Kelsey Jack, "undated". "Market Inefficiencies and the Adoption of Agricultural Technologies in Developing Countries," CID Working Papers 50, Center for International Development at Harvard University.
    18. Sauer, Johannes & Zilberman, David, 2009. "Innovation Behaviour At Farm Level – Selection And Identification," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51073, Agricultural Economics Society.
    19. Emerick, Kyle & Kelley, Erin & De Janvry, Alain & Sadoulet, Elisabeth, 2019. "Endogenous Information Sharing and the Gains from Using Network Information to Maximize Technology Adoption," CEPR Discussion Papers 13507, C.E.P.R. Discussion Papers.
    20. Terrance Hurley & Jawoo Koo & Kindie Tesfaye, 2018. "Weather risk: how does it change the yield benefits of nitrogen fertilizer and improved maize varieties in sub‐Saharan Africa?," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 711-723, November.

    More about this item

    Keywords

    irrigation technology adoption and diffusion; informational spillovers; social learning; extension services; factor analytic model; duration analysis; olive farms;
    All these keywords.

    JEL classification:

    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • O16 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Financial Markets; Saving and Capital Investment; Corporate Finance and Governance
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aue:wpaper:1319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ekaterini Glynou (email available below). General contact details of provider: https://edirc.repec.org/data/diauegr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.