IDEAS home Printed from
   My bibliography  Save this paper

The Effect of Production Uncertainty and Information Dissemination of the Diffusion of Irrigation Technologies


  • Koundouri, Phoebe
  • Nauges, Céline
  • Tzouvelekas, Vangelis


In this paper we study the diffusion of modern irrigation technologies among a population of farmers, with a particular focus on risk and information dissemination through network and imitation effects. The major contribution of our work is to extend the traditional (theoretical) model of diffusion to account for production risk and the value of information about the new technology. This model is then applied to a sample of 385 farms located in Crete, Greece, to describe diffusion of modern irrigation technologies. Our results indicate that risk aversion plays a significant role and that farmers who are more sensitive to the risk of extreme events will adopt the modern irrigation technology earlier. Knowledge, experience and information dissemination are found to reduce time before adoption of the new technology, while farmers tend to learn more from and/or imitate farmers that are homophylic to them with respect to their education level, age and farm specialization.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Koundouri, Phoebe & Nauges, Céline & Tzouvelekas, Vangelis, 2009. "The Effect of Production Uncertainty and Information Dissemination of the Diffusion of Irrigation Technologies," TSE Working Papers 09-032, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:22145

    Download full text from publisher

    File URL:
    File Function: Full text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Awudu Abdulai & Wallace E. Huffman, 2005. "The Diffusion of New Agricultural Technologies: The Case of Crossbred-Cow Technology in Tanzania," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(3), pages 645-659.
    2. Dinar, Ariel & Yaron, Dan, 1992. "Adoption and abandonment of irrigation technologies," Agricultural Economics, Blackwell, vol. 6(4), pages 315-332, April.
    3. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    4. Foster, Andrew D & Rosenzweig, Mark R, 1995. "Learning by Doing and Learning from Others: Human Capital and Technical Change in Agriculture," Journal of Political Economy, University of Chicago Press, vol. 103(6), pages 1176-1209, December.
    5. Kim, Kwansoo & Chavas, Jean-Paul, 2003. "Technological change and risk management: an application to the economics of corn production," Agricultural Economics, Blackwell, vol. 29(2), pages 125-142, October.
    6. Schlag, Karl H., 1998. "Why Imitate, and If So, How?, : A Boundedly Rational Approach to Multi-armed Bandits," Journal of Economic Theory, Elsevier, vol. 78(1), pages 130-156, January.
    7. Kiefer, Nicholas M, 1988. "Economic Duration Data and Hazard Functions," Journal of Economic Literature, American Economic Association, vol. 26(2), pages 646-679, June.
    8. Suzi Kerr & Richard G. Newell, 2003. "Policy-Induced Technology Adoption: Evidence from the U.S. Lead Phasedown," Journal of Industrial Economics, Wiley Blackwell, vol. 51(3), pages 317-343, September.
    9. Dinar, Ariel & Zilberman, David, 1991. "The economics of resource-conservation, pollution-reduction technology selection: The case of irrigation water," Resources and Energy, Elsevier, vol. 13(4), pages 323-348, December.
    10. Michael R. Rahm & Wallace E. Huffman, 1984. "The Adoption of Reduced Tillage: The Role of Human Capital and Other Variables," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(4), pages 405-413.
    11. Ariel Dinar & Mark Campbell & David Zilberman, 1992. "Adoption of improved irrigation and drainage reduction technologies under limiting environmental conditions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(4), pages 373-398, July.
    12. Chokri Dridi & Madhu Khanna, 2005. "Irrigation Technology Adoption and Gains from Water Trading under Asymmetric Information," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(2), pages 289-301.
    13. Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2006. "Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 657-670.
    14. Smith, Richard J & Blundell, Richard W, 1986. "An Exogeneity Test for a Simultaneous Equation Tobit Model with an Application to Labor Supply," Econometrica, Econometric Society, vol. 54(3), pages 679-685, May.
    15. Jensen, Michael C, 1986. "Agency Costs of Free Cash Flow, Corporate Finance, and Takeovers," American Economic Review, American Economic Association, vol. 76(2), pages 323-329, May.
    16. Sherlund, Shane M. & Barrett, Christopher B. & Adesina, Akinwumi A., 2002. "Smallholder technical efficiency controlling for environmental production conditions," Journal of Development Economics, Elsevier, vol. 69(1), pages 85-101, October.
    17. Timothy H. Hannan & John M. McDowell, 1984. "The Determinants of Technology Adoption: The Case of the Banking Firm," RAND Journal of Economics, The RAND Corporation, vol. 15(3), pages 328-335, Autumn.
    18. Dinar, Ariel & Yaron, Dan, 1992. "Adoption and abandonment of irrigation technologies," Agricultural Economics of Agricultural Economists, International Association of Agricultural Economists, vol. 6(4), April.
    19. Owens, Trudy & Hoddinott, John & Kinsey, Bill, 2003. "The Impact of Agricultural Extension on Farm Production in Resettlement Areas of Zimbabwe," Economic Development and Cultural Change, University of Chicago Press, vol. 51(2), pages 337-357, January.
    20. Abdulai, Awudu & Huffman, Wallace, 2007. "The Diffusion of New Agricultural Technologies: The Case of Crossbreeding Technology in Tanzania," Staff General Research Papers Archive 12785, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    More about this item


    duration model; irrigation technology; imitation effects;

    JEL classification:

    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:22145. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.