IDEAS home Printed from https://ideas.repec.org/a/eee/reseng/v13y1991i4p323-348.html
   My bibliography  Save this article

The economics of resource-conservation, pollution-reduction technology selection: The case of irrigation water

Author

Listed:
  • Dinar, Ariel
  • Zilberman, David

Abstract

No abstract is available for this item.

Suggested Citation

  • Dinar, Ariel & Zilberman, David, 1991. "The economics of resource-conservation, pollution-reduction technology selection: The case of irrigation water," Resources and Energy, Elsevier, vol. 13(4), pages 323-348, December.
  • Handle: RePEc:eee:reseng:v:13:y:1991:i:4:p:323-348
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0165-0572(91)90002-K
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julio Berbel & Carlos Gutiérrez-Martín & Juan Rodríguez-Díaz & Emilio Camacho & Pilar Montesinos, 2015. "Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 663-678, February.
    2. Robert Mendelsohn & Ariel Dinar, 2003. "Climate, Water, and Agriculture," Land Economics, University of Wisconsin Press, vol. 79(3), pages 328-341.
    3. Ariel Dinar & Jyothsna Mody, 2004. "Irrigation water management policies: Allocation and pricing principles and implementation experience," Natural Resources Forum, Blackwell Publishing, vol. 28(2), pages 112-122, May.
    4. Djiby Racine Thiam & Ariel Dinar & Hebert Ntuli, 2021. "Promotion of residential water conservation measures in South Africa: the role of water-saving equipment," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 173-210, January.
    5. Ariel Dinar & Mark Campbell & David Zilberman, 1992. "Adoption of improved irrigation and drainage reduction technologies under limiting environmental conditions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(4), pages 373-398, July.
    6. Loehman, Edna & Dinar, Ariel, 1992. "Cooperative Technology Solutions to Externality Problems: The Case of Irrigation Water," Working Papers 232418, University of California, Davis, Department of Agricultural and Resource Economics.
    7. Aurélien Dumont & Beatriz Mayor & Elena López-Gunn, 2013. "Is the rebound effect or Jevons paradox a useful concept for better management of water resources? Insights from the Irrigation Modernisation Process in Spain," Post-Print halshs-00991778, HAL.
    8. Ortega-Reig, M. & Sanchis-Ibor, C. & Palau-Salvador, G. & García-Mollá, M. & Avellá-Reus, L., 2017. "Institutional and management implications of drip irrigation introduction in collective irrigation systems in Spain," Agricultural Water Management, Elsevier, vol. 187(C), pages 164-172.
    9. Javad Torkamani & Shahrokh Shajari, 2008. "Adoption of New Irrigation Technology Under Production Risk," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(2), pages 229-237, February.
    10. Mendelsohn, Robert & Seo, Niggol, 2007. "Changing farm types and irrigation as an adaptation to climate change in Latin American agriculture," Policy Research Working Paper Series 4161, The World Bank.
    11. César Salazar & John Rand, 2016. "Production risk and adoption of irrigation technology: evidence from small-scale farmers in Chile," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 25(1), pages 1-37, December.
    12. KOUNDOURI Phoebe & NAUGES Céline & TZOUVELEKAS Vangelis, 2009. "The Effect Of Production Uncertainty And Information Dissemination On The Diffusion Of Irrigation Technologies," LERNA Working Papers 09.06.282, LERNA, University of Toulouse.
    13. Song, Jianfeng & Guo, Yanan & Wu, Pute & Sun, SHikun, 2018. "The Agricultural Water Rebound Effect in China," Ecological Economics, Elsevier, vol. 146(C), pages 497-506.
    14. Celine Nauges & Phoebe Koundouri & Vangelis Tzouvelekas, 2004. "Endogenous Technology Adoption Under Production Risk: Theory and Application to Irrigation Technology," Working Papers 0411, University of Crete, Department of Economics.
    15. Schwabe, Kurt A. & Knapp, Keith C. & Kan, Iddo, 2002. "Integrated Drainwater Management In Irrigated Agriculture," 2002 Annual meeting, July 28-31, Long Beach, CA 19609, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Zaveri, Esha & Fisher-Vanden, Karen & Wrenn, Douglas H. & Nicholas, Robert E., 2014. "Adapting to Monsoon Variability in India: the Case for Irrigation," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170583, Agricultural and Applied Economics Association.
    17. Gautam, Tej K. & Bhatta, Dependra, 2017. "Determinants Of Irrigation Technology Adoptions And Production Efficiency In Nepal’S Agricultural Sector," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252856, Southern Agricultural Economics Association.
    18. Vítor João Pereira Domingues Martinho, 2020. "Exploring the Topics of Soil Pollution and Agricultural Economics: Highlighting Good Practices," Agriculture, MDPI, vol. 10(1), pages 1-19, January.
    19. Dinar, Ariel & Aillery, Marcel P. & Moore, Michael R., 1991. "A Dynamic Model Of Multi-Crop Irrigated Agriculture Under Conditions Of Poor Resource Quality And Limited Drainage," Working Papers 225868, University of California, Davis, Department of Agricultural and Resource Economics.
    20. Danso, G.K. & Jeffrey, S.R. & Dridi, C. & Veeman, T., 2021. "Modeling irrigation technology adoption and crop choices: Gains from water trading with farmer heterogeneity in Southern Alberta, Canada," Agricultural Water Management, Elsevier, vol. 253(C).
    21. Mendelsohn, Robert & Dinar, Ariel, 1999. "Climate Change, Agriculture, and Developing Countries: Does Adaptation Matter?," The World Bank Research Observer, World Bank Group, vol. 14(2), pages 277-293, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reseng:v:13:y:1991:i:4:p:323-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.