IDEAS home Printed from https://ideas.repec.org/a/eee/indorg/v101y2025ics0167718725000426.html

Extreme high temperatures, firm dynamics and heterogeneity, and aggregate productivity: The case of Chinese manufacturing

Author

Listed:
  • Shi, Xiangyu
  • Zhang, Xin

Abstract

We investigate how extreme (high) temperatures impact firm dynamics—specifically entry, exit, and aggregate productivity—in China's manufacturing sectors. While existing studies primarily focus on the effects of extreme temperatures on incumbent firms (intensive margin), we examine their influence on firm entry and exit (extensive margin) and the resulting implications for aggregate productivity. Extreme temperatures reduce the productivity of incumbent firms (productivity effects) but also select for higher-productivity firms to survive (selection effects). Leveraging a unique dataset containing registration information for the universe of firms, we document a novel general equilibrium mechanism: resources released by the exit of low-productivity firms are reallocated to higher-productivity firms. As a result, the combined effects on aggregate productivity are muted, challenging the prevailing consensus that extreme temperatures universally worsen productivity and economic outcomes. Using a heterogeneous firm framework à la Melitz (2003), we quantify these effects, providing valuable insights into the role of firm dynamics in shaping effective climate policies.

Suggested Citation

  • Shi, Xiangyu & Zhang, Xin, 2025. "Extreme high temperatures, firm dynamics and heterogeneity, and aggregate productivity: The case of Chinese manufacturing," International Journal of Industrial Organization, Elsevier, vol. 101(C).
  • Handle: RePEc:eee:indorg:v:101:y:2025:i:c:s0167718725000426
    DOI: 10.1016/j.ijindorg.2025.103176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167718725000426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijindorg.2025.103176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robert G. Chambers & Rulon D. Pope, 1996. "Aggregate Productivity Measures," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(5), pages 1360-1365.
    2. Deschenes, Olivier & Wang, Huixia & Wang, Si & Zhang, Peng, 2020. "The effect of air pollution on body weight and obesity: Evidence from China," Journal of Development Economics, Elsevier, vol. 145(C).
    3. Joseph S. Shapiro & Reed Walker, 2018. "Why Is Pollution from US Manufacturing Declining? The Roles of Environmental Regulation, Productivity, and Trade," American Economic Review, American Economic Association, vol. 108(12), pages 3814-3854, December.
    4. Gong, Jiaowei & Shi, Xiangyu & Wang, Chang & Zhang, Xin, 2025. "Extreme high temperatures and adaptation by social dynamics: Theory and evidence from China," Journal of Economic Behavior & Organization, Elsevier, vol. 234(C).
    5. Chen, Xiaoguang & Yang, Lu, 2019. "Temperature and industrial output: Firm-level evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 257-274.
    6. Nina Pavcnik, 2002. "Trade Liberalization, Exit, and Productivity Improvements: Evidence from Chilean Plants," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(1), pages 245-276.
    7. Daron Acemoglu & Ufuk Akcigit & Harun Alp & Nicholas Bloom & William Kerr, 2018. "Innovation, Reallocation, and Growth," American Economic Review, American Economic Association, vol. 108(11), pages 3450-3491, November.
    8. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    9. E. Somanathan & Rohini Somanathan & Anant Sudarshan & Meenu Tewari, 2021. "The Impact of Temperature on Productivity and Labor Supply: Evidence from Indian Manufacturing," Journal of Political Economy, University of Chicago Press, vol. 129(6), pages 1797-1827.
    10. Basu, Susanto & Fernald, John G., 2002. "Aggregate productivity and aggregate technology," European Economic Review, Elsevier, vol. 46(6), pages 963-991, June.
    11. Margarida Duarte & Diego Restuccia, 2010. "The Role of the Structural Transformation in Aggregate Productivity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(1), pages 129-173.
    12. Zhang, Peng & Deschenes, Olivier & Meng, Kyle & Zhang, Junjie, 2018. "Temperature effects on productivity and factor reallocation: Evidence from a half million chinese manufacturing plants," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 1-17.
    13. Jovanovic, Boyan, 1982. "Selection and the Evolution of Industry," Econometrica, Econometric Society, vol. 50(3), pages 649-670, May.
    14. Jonathan Colmer, 2021. "Temperature, Labor Reallocation, and Industrial Production: Evidence from India," American Economic Journal: Applied Economics, American Economic Association, vol. 13(4), pages 101-124, October.
    15. Shi, Xiangyu & Xi, Tianyang & Zhang, Xiaobo & Zhang, Yifan, 2021. "“Moving Umbrella”: Bureaucratic transfers and the comovement of interregional investments in China," Journal of Development Economics, Elsevier, vol. 153(C).
    16. Marc J. Melitz, 2003. "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity," Econometrica, Econometric Society, vol. 71(6), pages 1695-1725, November.
    17. Achyuta Adhvaryu & Namrata Kala & Anant Nyshadham, 2020. "The Light and the Heat: Productivity Co-Benefits of Energy-Saving Technology," The Review of Economics and Statistics, MIT Press, vol. 102(4), pages 779-792, October.
    18. Rudik, Ivan & Lyn, Gary & Tan, Weiliang & Ortiz-Bobea, Ariel, 2022. "The Economic Effects of Climate Change in Dynamic Spatial Equilibrium," Conference papers 333486, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Corey White, 2017. "The Dynamic Relationship between Temperature and Morbidity," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(4), pages 1155-1198.
    20. Hopenhayn, Hugo A, 1992. "Entry, Exit, and Firm Dynamics in Long Run Equilibrium," Econometrica, Econometric Society, vol. 60(5), pages 1127-1150, September.
    21. Chad Syverson, 2011. "What Determines Productivity?," Journal of Economic Literature, American Economic Association, vol. 49(2), pages 326-365, June.
    22. Bee Yan Aw & Mark J. Roberts & Daniel Yi Xu, 2008. "R&D Investments, Exporting, and the Evolution of Firm Productivity," American Economic Review, American Economic Association, vol. 98(2), pages 451-456, May.
    23. Chen, Shuai & Oliva, Paulina & Zhang, Peng, 2022. "The effect of air pollution on migration: Evidence from China," Journal of Development Economics, Elsevier, vol. 156(C).
    24. Joseph S Shapiro, 2021. "The Environmental Bias of Trade Policy," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 136(2), pages 831-886.
    25. Agarwal, Sumit & Qin, Yu & Shi, Luwen & Wei, Guoxu & Zhu, Hongjia, 2021. "Impact of temperature on morbidity: New evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    26. Guojun He & Shaoda Wang & Bing Zhang, 2020. "Watering Down Environmental Regulation in China," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 135(4), pages 2135-2185.
    27. Andrew Atkeson & Ariel Tomás Burstein, 2010. "Innovation, Firm Dynamics, and International Trade," Journal of Political Economy, University of Chicago Press, vol. 118(3), pages 433-484, June.
    28. Shihe Fu & V Brian Viard & Peng Zhang, 2021. "Air Pollution and Manufacturing Firm Productivity: Nationwide Estimates for China [Management and shocks to worker productivity]," The Economic Journal, Royal Economic Society, vol. 131(640), pages 3241-3273.
    29. Joshua Graff Zivin & Matthew Neidell, 2014. "Temperature and the Allocation of Time: Implications for Climate Change," Journal of Labor Economics, University of Chicago Press, vol. 32(1), pages 1-26.
    30. Daniel A. Ackerberg & Kevin Caves & Garth Frazer, 2015. "Identification Properties of Recent Production Function Estimators," Econometrica, Econometric Society, vol. 83, pages 2411-2451, November.
    31. Griliches, Zvi & Regev, Haim, 1995. "Firm productivity in Israeli industry 1979-1988," Journal of Econometrics, Elsevier, vol. 65(1), pages 175-203, January.
    32. Cascarano, Michele & Natoli, Filippo & Petrella, Andrea, 2025. "Entry, exit, and market structure in a changing climate," European Economic Review, Elsevier, vol. 176(C).
    33. Jiafeng Chen & Jonathan Roth, 2024. "Logs with Zeros? Some Problems and Solutions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(2), pages 891-936.
    34. Christian Broda & David E. Weinstein, 2006. "Globalization and the Gains From Variety," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 541-585.
    35. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    36. Ufuk Akcigit & Harun Alp & Michael Peters, 2021. "Lack of Selection and Limits to Delegation: Firm Dynamics in Developing Countries," American Economic Review, American Economic Association, vol. 111(1), pages 231-275, January.
    37. Petia Topalova & Amit Khandelwal, 2011. "Trade Liberalization and Firm Productivity: The Case of India," The Review of Economics and Statistics, MIT Press, vol. 93(3), pages 995-1009, August.
    38. Xin Zhang & Xi Chen & Xiaobo Zhang, 2024. "Temperature and Low-Stakes Cognitive Performance," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 11(1), pages 75-96.
    39. Yu, Xiumei & Lei, Xiaoyan & Wang, Min, 2019. "Temperature effects on mortality and household adaptation: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 195-212.
    40. Lucia Foster & John Haltiwanger & Chad Syverson, 2008. "Reallocation, Firm Turnover, and Efficiency: Selection on Productivity or Profitability?," American Economic Review, American Economic Association, vol. 98(1), pages 394-425, March.
    41. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    42. Marshall Burke & Felipe González & Patrick Baylis & Sam Heft-Neal & Ceren Baysan & Sanjay Basu & Solomon Hsiang, 2018. "Higher temperatures increase suicide rates in the United States and Mexico," Nature Climate Change, Nature, vol. 8(8), pages 723-729, August.
    43. José-Luis Cruz & Esteban Rossi-Hansberg, 2024. "The Economic Geography of Global Warming," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(2), pages 899-939.
    44. Deschenes, Olivier, 2014. "Temperature, human health, and adaptation: A review of the empirical literature," Energy Economics, Elsevier, vol. 46(C), pages 606-619.
    45. Miaojie Yu, 2015. "Processing Trade, Tariff Reductions and Firm Productivity: Evidence from Chinese Firms," Economic Journal, Royal Economic Society, vol. 125(585), pages 943-988, June.
    46. Berry, Steven T, 1992. "Estimation of a Model of Entry in the Airline Industry," Econometrica, Econometric Society, vol. 60(4), pages 889-917, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Jiaowei & Shi, Xiangyu & Wang, Chang & Zhang, Xin, 2025. "Extreme high temperatures and adaptation by social dynamics: Theory and evidence from China," Journal of Economic Behavior & Organization, Elsevier, vol. 234(C).
    2. Lyu, Zhuoyang & Yu, Li & Liu, Chen & Ma, Tiemeng, 2024. "When temperatures matter: Extreme heat and labor share," Energy Economics, Elsevier, vol. 138(C).
    3. Tarsia, Romano, 2024. "Heterogeneous effects of weather shocks on firm economic performance," LSE Research Online Documents on Economics 124251, London School of Economics and Political Science, LSE Library.
    4. Enrico De Monte, 2020. "Entry, Exit and Productivity: Evidence from French Manufacturing Firms," Working Papers of BETA 2020-07, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    5. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    6. Mauro Caselli & Arpita Chatterjee & Shengyu Li, 2023. "Productivity and Quality of Multi-product Firms," Discussion Papers 2023-10, School of Economics, The University of New South Wales.
    7. Tran, Hien Thu, 2019. "Institutional quality and market selection in the transition to market economy," Journal of Business Venturing, Elsevier, vol. 34(5), pages 1-1.
    8. repec:osf:socarx:bwxfz_v1 is not listed on IDEAS
    9. Andrew B. Bernard & Stephen J. Redding & Peter K. Schott, 2009. "Products and Productivity," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(4), pages 681-709, December.
    10. Long, Xianling & Wang, Zhiqiang, 2025. "From heat to high-tech: How innovation responds to climate change," Journal of Development Economics, Elsevier, vol. 176(C).
    11. Hao, Xinya & Huang, Yongying & Zhang, Lin, 2025. "High temperature, power rationing, and firm performance," Journal of Development Economics, Elsevier, vol. 176(C).
    12. Jaqueline Oliveira & Bruno Palialol & Paula Pereda, 2021. "Do temperature shocks affect non-agriculture wages in Brazil? Evidence from individual-level panel data," Working Papers, Department of Economics 2021_13, University of São Paulo (FEA-USP).
    13. Valenti, Giulia & Vona, Francesco, 2024. "Hot Wages: How Do Heat Waves Change the Earnings Distribution?," FEEM Working Papers 348848, Fondazione Eni Enrico Mattei (FEEM).
    14. Tang, Yuwei & He, Zhenyu, 2024. "Extreme heat and firms' robot adoption: Evidence from China," China Economic Review, Elsevier, vol. 85(C).
    15. Joshua S. Graff Zivin & Anthony Lepinteur & Matthew J. Neidell & Adrian Nieto Castro, 2025. "A Cold Stop: Temperature, Unemployment and Joblessness Dynamics," NBER Working Papers 34487, National Bureau of Economic Research, Inc.
    16. Li, Xue & Smyth, Russell & Yao, Yao, 2023. "Extreme temperatures and out-of-pocket medical expenditure: Evidence from China," China Economic Review, Elsevier, vol. 77(C).
    17. Li, Chengzheng & Cong, Jiajia & Yin, Lijuan, 2021. "Extreme heat and exports: Evidence from Chinese exporters," China Economic Review, Elsevier, vol. 66(C).
    18. Moustafa Feriga & Nancy Lozano Gracia & Pieter Serneels, 2025. "The Impact of Climate Change on Work: Lessons for Developing Countries," The World Bank Research Observer, World Bank, vol. 40(1), pages 104-146.
    19. Chen, Fanglin & Zhang, Xin & Chen, Zhongfei, 2023. "Behind climate change: Extreme heat and health cost," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 101-110.
    20. Chen, Xiaodong & Lin, Yatang & Zhu, Pengyu, 2025. "The impact of rainfall on productivity: Implications for Chinese manufacturing," Journal of Comparative Economics, Elsevier, vol. 53(2), pages 389-411.
    21. Li, Haoyang & Chen, Yifeng & Ma, Mingming, 2024. "Temperature and life satisfaction: Evidence from Chinese older adults," Ecological Economics, Elsevier, vol. 225(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • D21 - Microeconomics - - Production and Organizations - - - Firm Behavior: Theory
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:indorg:v:101:y:2025:i:c:s0167718725000426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505551 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.