IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v231y2021ics0360544221010550.html
   My bibliography  Save this article

How to escape the dilemma of charging infrastructure construction? A multi-sectorial stochastic evolutionary game model

Author

Listed:
  • Li, Junqiang
  • Ren, Hao
  • Wang, Mingyue

Abstract

Providing effective charging infrastructure is an essential step in popularizing electric vehicles, which is conductive to improving pollution induced by traditional fuel vehicles and thus improving the environmental sustainability. The most crucial factor in escaping the dilemma of charging infrastructure construction lies in the synergies of multi-sectorial. This paper develops a stochastic evolutionary game model grounded on the strategy adoption of charging infrastructure construction involving governments (public), companies (private), and consumers (civil). We collect the data of Shanghai for simulation to compare the influence of strategy adoption. Our findings suggest that ⅰ) unlike the public and civil sector, in the current situation, the private sector will adopt the defector strategy quickly and lock in the defection state as time goes on; ⅱ) the additional cost effect caused by public-civil co-construction scenario is significant positive to the public sector but almost no impact on the civil sector; ⅲ) civil's strategy adoption has directional differences under two cost sharing scenarios (private-civil and public-civil) of charging infrastructures construction. In the private-civil scenario, if the cost of charging infrastructures construction is transferred to the civil sector, not only will it not change the private-sectorial defection state, but it will also cause civil sector to shift from cooperation to defection. However, at the same sharing ratio of the public-civil scenario, the civil sector is still willing to cooperate. ⅳ) reducing incentives of electric vehicles or increasing costs of internal combustion engine vehicles is necessary, which will not change the lock-in cooperation state of civil sector, and it can improve the cooperation willingness of publicsector.

Suggested Citation

  • Li, Junqiang & Ren, Hao & Wang, Mingyue, 2021. "How to escape the dilemma of charging infrastructure construction? A multi-sectorial stochastic evolutionary game model," Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221010550
    DOI: 10.1016/j.energy.2021.120807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221010550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Peterson, Scott B. & Michalek, Jeremy J., 2013. "Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption," Energy Policy, Elsevier, vol. 52(C), pages 429-438.
    3. Amann, Erwin & Possajennikov, Alex, 2009. "On the stability of evolutionary dynamics in games with incomplete information," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 310-321, November.
    4. Kristel M. R. Hoen & Tarkan Tan & Jan C. Fransoo & Geert-Jan van Houtum, 2014. "Switching Transport Modes to Meet Voluntary Carbon Emission Targets," Transportation Science, INFORMS, vol. 48(4), pages 592-608, November.
    5. Madina, Carlos & Zamora, Inmaculada & Zabala, Eduardo, 2016. "Methodology for assessing electric vehicle charging infrastructure business models," Energy Policy, Elsevier, vol. 89(C), pages 284-293.
    6. Abd Alla, Sara & Bianco, Vincenzo & Tagliafico, Luca A. & Scarpa, Federico, 2021. "Pathways to electric mobility integration in the Italian automotive sector," Energy, Elsevier, vol. 221(C).
    7. Fan, Jing-Li & Wang, Jia-Xing & Zhang, Xian, 2020. "An innovative subsidy model for promoting the sharing of Electric Vehicles in China: A pricing decisions analysis," Energy, Elsevier, vol. 201(C).
    8. Chen, Han & Yang, Lei & Chen, Wenying, 2020. "Modelling national, provincial and city-level low-carbon energy transformation pathways," Energy Policy, Elsevier, vol. 137(C).
    9. Encarnação, Sara & Santos, Fernando P. & Santos, Francisco C. & Blass, Vered & Pacheco, Jorge M. & Portugali, Juval, 2018. "Paths to the adoption of electric vehicles: An evolutionary game theoretical approach," Transportation Research Part B: Methodological, Elsevier, vol. 113(C), pages 24-33.
    10. Sehar, Fakeha & Pipattanasomporn, Manisa & Rahman, Saifur, 2017. "Demand management to mitigate impacts of plug-in electric vehicle fast charge in buildings with renewables," Energy, Elsevier, vol. 120(C), pages 642-651.
    11. Zhenpo Wang & Peng Liu & Jia Cui & Yue Xi & Lei Zhang, 2013. "Research on Quantitative Models of Electric Vehicle Charging Stations Based on Principle of Energy Equivalence," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-10, August.
    12. Robert M. May & Simon A. Levin & George Sugihara, 2008. "Ecology for bankers," Nature, Nature, vol. 451(7181), pages 893-894, February.
    13. Bellocchi, Sara & Klöckner, Kai & Manno, Michele & Noussan, Michel & Vellini, Michela, 2019. "On the role of electric vehicles towards low-carbon energy systems: Italy and Germany in comparison," Applied Energy, Elsevier, vol. 255(C).
    14. Martin Hovey & Larry Li & Tony Naughton, 2003. "The Relationship Between Valuation and Ownership of Listed Firms in China," Corporate Governance: An International Review, Wiley Blackwell, vol. 11(2), pages 112-122, April.
    15. Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
    16. Orsi, Francesco & Muratori, Matteo & Rocco, Matteo & Colombo, Emanuela & Rizzoni, Giorgio, 2016. "A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost," Applied Energy, Elsevier, vol. 169(C), pages 197-209.
    17. Friedman, Daniel, 1991. "Evolutionary Games in Economics," Econometrica, Econometric Society, vol. 59(3), pages 637-666, May.
    18. Kwon, Yeongmin & Son, Sanghoon & Jang, Kitae, 2018. "Evaluation of incentive policies for electric vehicles: An experimental study on Jeju Island," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 404-412.
    19. Wu, Tian & Ma, Lin & Mao, Zhonggen & Ou, Xunmin, 2015. "Setting up charging electric stations within residential communities in current China: Gaming of government agencies and property management companies," Energy Policy, Elsevier, vol. 77(C), pages 216-226.
    20. Sovacool, Benjamin K. & Abrahamse, Wokje & Zhang, Long & Ren, Jingzheng, 2019. "Pleasure or profit? Surveying the purchasing intentions of potential electric vehicle adopters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 69-81.
    21. Fritz, Markus & Plötz, Patrick & Funke, Simon A., 2019. "The impact of ambitious fuel economy standards on the market uptake of electric vehicles and specific CO2 emissions," Energy Policy, Elsevier, vol. 135(C).
    22. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    23. Lévay, Petra Zsuzsa & Drossinos, Yannis & Thiel, Christian, 2017. "The effect of fiscal incentives on market penetration of electric vehicles: A pairwise comparison of total cost of ownership," Energy Policy, Elsevier, vol. 105(C), pages 524-533.
    24. Cui, Lian-Biao & Fan, Ying & Zhu, Lei & Bi, Qing-Hua, 2014. "How will the emissions trading scheme save cost for achieving China’s 2020 carbon intensity reduction target?," Applied Energy, Elsevier, vol. 136(C), pages 1043-1052.
    25. Du, Jun & Liu, Xiaoxuan & Zhou, Ying, 2014. "State advances and private retreats? — Evidence of aggregate productivity decomposition in China," China Economic Review, Elsevier, vol. 31(C), pages 459-474.
    26. Qiang, Qu, 2003. "Corporate governance and state-owned shares in China listed companies," Journal of Asian Economics, Elsevier, vol. 14(5), pages 771-783, October.
    27. Kim, Moon-Koo & Oh, Jeesun & Park, Jong-Hyun & Joo, Changlim, 2018. "Perceived value and adoption intention for electric vehicles in Korea: Moderating effects of environmental traits and government supports," Energy, Elsevier, vol. 159(C), pages 799-809.
    28. Ji, Shou-feng & Zhao, Dan & Luo, Rong-juan, 2019. "Evolutionary game analysis on local governments and manufacturers' behavioral strategies: Impact of phasing out subsidies for new energy vehicles," Energy, Elsevier, vol. 189(C).
    29. Liu, Jian, 2012. "Electric vehicle charging infrastructure assignment and power grid impacts assessment in Beijing," Energy Policy, Elsevier, vol. 51(C), pages 544-557.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingfa Zhang & Huaying Qin & Weishuang Xu, 2022. "Environmental Regulation, Greenwashing Behaviour, and Green Governance of High-Pollution Enterprises in China," IJERPH, MDPI, vol. 19(19), pages 1-22, October.
    2. Huang, Xingjun & Lin, Yun & Lim, Ming K. & Zhou, Fuli & Liu, Feng, 2022. "Electric vehicle charging station diffusion: An agent-based evolutionary game model in complex networks," Energy, Elsevier, vol. 257(C).
    3. Li, Xiaozhu & Chen, Laijun & Sun, Fan & Hao, Yibo & Du, Xili & Mei, Shenwei, 2023. "Share or not share, the analysis of energy storage interaction of multiple renewable energy stations based on the evolution game," Renewable Energy, Elsevier, vol. 208(C), pages 679-692.
    4. Guo, Jian & Zhong, Minghao & Chen, Shuran, 2022. "Analysis and simulation of BECCS vertical integration model in China based on evolutionary game and system dynamics," Energy, Elsevier, vol. 252(C).
    5. Zheng, Shan & Yu, Lianghong, 2022. "The government's subsidy strategy of carbon-sink fishery based on evolutionary game," Energy, Elsevier, vol. 254(PB).
    6. Liu, Yajie & Dong, Feng, 2022. "What are the roles of consumers, automobile production enterprises, and the government in the process of banning gasoline vehicles? Evidence from a tripartite evolutionary game model," Energy, Elsevier, vol. 238(PC).
    7. Dongpu Fu & Jiarui Sun & Cuiyou Yao & Fulei Shi, 2024. "The influence of policy incentives on the diffusion of battery-swapping taxis and stations: a coupled evolutionary game model in complex networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 26945-26969, October.
    8. Xinyang Xu & Yang Yang, 2022. "Analysis of the Dilemma of Promoting Circular Logistics Packaging in China: A Stochastic Evolutionary Game-Based Approach," IJERPH, MDPI, vol. 19(12), pages 1-22, June.
    9. Chen, Rongkai & Fan, Ruguo & Wang, Dongxue & Yao, Qianyi, 2023. "Effects of multiple incentives on electric vehicle charging infrastructure deployment in China: An evolutionary analysis in complex network," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Youlin & Qian, Lixian, 2021. "Consumer adoption of electric vehicles in alternative business models," Energy Policy, Elsevier, vol. 155(C).
    2. Li, Larry & McMurray, Adela & Sy, Malick & Xue, Jinjun, 2018. "Corporate ownership, efficiency and performance under state capitalism: Evidence from China," Journal of Policy Modeling, Elsevier, vol. 40(4), pages 747-766.
    3. Green, Erin H. & Skerlos, Steven J. & Winebrake, James J., 2014. "Increasing electric vehicle policy efficiency and effectiveness by reducing mainstream market bias," Energy Policy, Elsevier, vol. 65(C), pages 562-566.
    4. Ye Yang & Zhongfu Tan, 2019. "Investigating the Influence of Consumer Behavior and Governmental Policy on the Diffusion of Electric Vehicles in Beijing, China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    5. Zarazua de Rubens, Gerardo, 2019. "Who will buy electric vehicles after early adopters? Using machine learning to identify the electric vehicle mainstream market," Energy, Elsevier, vol. 172(C), pages 243-254.
    6. Tan, Bing Qing & Kang, Kai & Zhong, Ray Y., 2023. "Electric vehicle charging infrastructure investment strategy analysis: State-owned versus private parking lots," Transport Policy, Elsevier, vol. 141(C), pages 54-71.
    7. Anders F. Jensen & Thomas K. Rasmussen & Carlo G. Prato, 2020. "A Route Choice Model for Capturing Driver Preferences When Driving Electric and Conventional Vehicles," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    8. Madhusudhan Adhikari & Laxman Prasad Ghimire & Yeonbae Kim & Prakash Aryal & Sundar Bahadur Khadka, 2020. "Identification and Analysis of Barriers against Electric Vehicle Use," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    9. Wu, Tian & Shang, Zhe & Tian, Xin & Wang, Shouyang, 2016. "How hyperbolic discounting preference affects Chinese consumers’ consumption choice between conventional and electric vehicles," Energy Policy, Elsevier, vol. 97(C), pages 400-413.
    10. Ma, Shao-Chao & Fan, Ying, 2020. "A deployment model of EV charging piles and its impact on EV promotion," Energy Policy, Elsevier, vol. 146(C).
    11. Tian Wu & Bohan Zeng & Yali He & Xin Tian & Xunmin Ou, 2017. "Sustainable Governance for the Opened Electric Vehicle Charging and Upgraded Facilities Market," Sustainability, MDPI, vol. 9(11), pages 1-22, November.
    12. Wu, Tian & Ma, Lin & Mao, Zhonggen & Ou, Xunmin, 2015. "Setting up charging electric stations within residential communities in current China: Gaming of government agencies and property management companies," Energy Policy, Elsevier, vol. 77(C), pages 216-226.
    13. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    14. Wang, Jie & He, Ya-qun & Wang, Heng-guang & Wu, Ru-fei, 2023. "Low-carbon promotion of new energy vehicles: A quadrilateral evolutionary game," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Motoaki, Yutaka & Shirk, Matthew G., 2017. "Consumer behavioral adaption in EV fast charging through pricing," Energy Policy, Elsevier, vol. 108(C), pages 178-183.
    16. Eunsung Kim & Eunnyeong Heo, 2019. "Key Drivers behind the Adoption of Electric Vehicle in Korea: An Analysis of the Revealed Preferences," Sustainability, MDPI, vol. 11(23), pages 1-15, December.
    17. Zhang, Qi & Li, Hailong & Zhu, Lijing & Campana, Pietro Elia & Lu, Huihui & Wallin, Fredrik & Sun, Qie, 2018. "Factors influencing the economics of public charging infrastructures for EV – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 500-509.
    18. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Larson, Paul D. & Viáfara, Jairo & Parsons, Robert V. & Elias, Arne, 2014. "Consumer attitudes about electric cars: Pricing analysis and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 299-314.
    20. Hongxia Sun & Yao Wan & Huirong Lv, 2020. "System Dynamics Model for the Evolutionary Behaviour of Government Enterprises and Consumers in China’s New Energy Vehicle Market," Sustainability, MDPI, vol. 12(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221010550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.