IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/959065.html
   My bibliography  Save this article

Research on Quantitative Models of Electric Vehicle Charging Stations Based on Principle of Energy Equivalence

Author

Listed:
  • Zhenpo Wang
  • Peng Liu
  • Jia Cui
  • Yue Xi
  • Lei Zhang

Abstract

In order to adapt the matching and planning requirements of charging station in the electric vehicle (EV) marketization application, with related layout theories of the gas stations, a location model of charging stations is established based on electricity consumption along the roads among cities. And a quantitative model of charging stations is presented based on the conversion of oil sales in a certain area. Both are combining the principle based on energy consuming equivalence substitution in process of replacing traditional vehicles with EVs. Defined data are adopted in the example analysis of two numerical case models and analyze the influence on charging station layout and quantity from the factors like the proportion of vehicle types and the EV energy consumption at the same time. The results show that the quantitative model of charging stations is reasonable and feasible. The number of EVs and the energy consumption of EVs bring more significant impact on the number of charging stations than that of vehicle type proportion, which provides a basis for decision making for charging stations construction layout in reality.

Suggested Citation

  • Zhenpo Wang & Peng Liu & Jia Cui & Yue Xi & Lei Zhang, 2013. "Research on Quantitative Models of Electric Vehicle Charging Stations Based on Principle of Energy Equivalence," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-10, August.
  • Handle: RePEc:hin:jnlmpe:959065
    DOI: 10.1155/2013/959065
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/959065.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/959065.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/959065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arijit Ghosh & Neha Ghorui & Sankar Prasad Mondal & Suchitra Kumari & Biraj Kanti Mondal & Aditya Das & Mahananda Sen Gupta, 2021. "Application of Hexagonal Fuzzy MCDM Methodology for Site Selection of Electric Vehicle Charging Station," Mathematics, MDPI, vol. 9(4), pages 1-27, February.
    2. Li, Junqiang & Ren, Hao & Wang, Mingyue, 2021. "How to escape the dilemma of charging infrastructure construction? A multi-sectorial stochastic evolutionary game model," Energy, Elsevier, vol. 231(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:959065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.