IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v77y2015icp216-226.html
   My bibliography  Save this article

Setting up charging electric stations within residential communities in current China: Gaming of government agencies and property management companies

Author

Listed:
  • Wu, Tian
  • Ma, Lin
  • Mao, Zhonggen
  • Ou, Xunmin

Abstract

The difficulty of charging electric vehicles (EVs) is now hindering their further development. Governments generally choose to build stations for home charging (including piles) within residential communities. Given the conflict of interest between various government agencies and property management companies, constructing a charging station within residential communities would result in welfare loss for the property management companies and therefore lead to the principal–agent problem. This paper constructs a two-period imperfect information game theory model to study the moral hazard involved in this issue and government agencies׳ optimal choice. In the analytic solution of the model, we find that the optimal choice for a farsighted government agency is to constantly improve the incentive mechanism and introduce charging stations only when the conflict of interest is eliminated. Any benefits derived from government regulations by force would prove short-lived. The government should focus on long-term returns in the development of EVs, and its optimal mechanism should be designed to mitigate the principal–agent problem of property management companies, thereby accelerate the progress of EV charging infrastructure and improve overall social welfare.

Suggested Citation

  • Wu, Tian & Ma, Lin & Mao, Zhonggen & Ou, Xunmin, 2015. "Setting up charging electric stations within residential communities in current China: Gaming of government agencies and property management companies," Energy Policy, Elsevier, vol. 77(C), pages 216-226.
  • Handle: RePEc:eee:enepol:v:77:y:2015:i:c:p:216-226
    DOI: 10.1016/j.enpol.2014.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421514005564
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2014.10.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tseng, Hui-Kuan & Wu, Jy S. & Liu, Xiaoshuai, 2013. "Affordability of electric vehicles for a sustainable transport system: An economic and environmental analysis," Energy Policy, Elsevier, vol. 61(C), pages 441-447.
    2. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    3. Ma, Hongrui & Balthasar, Felix & Tait, Nigel & Riera-Palou, Xavier & Harrison, Andrew, 2012. "A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles," Energy Policy, Elsevier, vol. 44(C), pages 160-173.
    4. Axsen, Jonn & Kurani, Kenneth S, 2010. "Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles," Institute of Transportation Studies, Working Paper Series qt3h69n0cs, Institute of Transportation Studies, UC Davis.
    5. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
    6. Yinjiao Xing & Eden W. M. Ma & Kwok L. Tsui & Michael Pecht, 2011. "Battery Management Systems in Electric and Hybrid Vehicles," Energies, MDPI, vol. 4(11), pages 1-18, October.
    7. Liu, Jian, 2012. "Electric vehicle charging infrastructure assignment and power grid impacts assessment in Beijing," Energy Policy, Elsevier, vol. 51(C), pages 544-557.
    8. Zhou, Guanghui & Ou, Xunmin & Zhang, Xiliang, 2013. "Development of electric vehicles use in China: A study from the perspective of life-cycle energy consumption and greenhouse gas emissions," Energy Policy, Elsevier, vol. 59(C), pages 875-884.
    9. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    10. Lin, Chengtao & Wu, Tian & Ou, Xunmin & Zhang, Qian & Zhang, Xu & Zhang, Xiliang, 2013. "Life-cycle private costs of hybrid electric vehicles in the current Chinese market," Energy Policy, Elsevier, vol. 55(C), pages 501-510.
    11. Peterson, Scott B. & Michalek, Jeremy J., 2013. "Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption," Energy Policy, Elsevier, vol. 52(C), pages 429-438.
    12. Xingping Zhang & Rao Rao & Jian Xie & Yanni Liang, 2014. "The Current Dilemma and Future Path of China’s Electric Vehicles," Sustainability, MDPI, vol. 6(3), pages 1-27, March.
    13. Kihm, Alexander & Trommer, Stefan, 2014. "The new car market for electric vehicles and the potential for fuel substitution," Energy Policy, Elsevier, vol. 73(C), pages 147-157.
    14. Troy R. Hawkins & Bhawna Singh & Guillaume Majeau‐Bettez & Anders Hammer Strømman, 2013. "Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 53-64, February.
    15. Hao, Han & Ou, Xunmin & Du, Jiuyu & Wang, Hewu & Ouyang, Minggao, 2014. "China’s electric vehicle subsidy scheme: Rationale and impacts," Energy Policy, Elsevier, vol. 73(C), pages 722-732.
    16. Delucchi, Mark & Lipman, Timothy, 2001. "An Analysis of the Retail and Lifecycle Cost of Battery-Powered Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt50q9060k, Institute of Transportation Studies, UC Davis.
    17. Wu, Ye & Yang, Zhengdong & Lin, Bohong & Liu, Huan & Wang, Renjie & Zhou, Boya & Hao, Jiming, 2012. "Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China," Energy Policy, Elsevier, vol. 48(C), pages 537-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Junqiang & Ren, Hao & Wang, Mingyue, 2021. "How to escape the dilemma of charging infrastructure construction? A multi-sectorial stochastic evolutionary game model," Energy, Elsevier, vol. 231(C).
    2. Hongxia Sun & Yao Wan & Huirong Lv, 2020. "System Dynamics Model for the Evolutionary Behaviour of Government Enterprises and Consumers in China’s New Energy Vehicle Market," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    3. Tian Wu & Bohan Zeng & Yali He & Xin Tian & Xunmin Ou, 2017. "Sustainable Governance for the Opened Electric Vehicle Charging and Upgraded Facilities Market," Sustainability, MDPI, vol. 9(11), pages 1-22, November.
    4. Gu, Huaying & Liu, Zhixue & Qing, Qiankai, 2017. "Optimal electric vehicle production strategy under subsidy and battery recycling," Energy Policy, Elsevier, vol. 109(C), pages 579-589.
    5. Li, Yaoming & Zhang, Qi & Liu, Boyu & McLellan, Benjamin & Gao, Yuan & Tang, Yanyan, 2018. "Substitution effect of New-Energy Vehicle Credit Program and Corporate Average Fuel Consumption Regulation for Green-car Subsidy," Energy, Elsevier, vol. 152(C), pages 223-236.
    6. Andrea Stabile & Michela Longo & Wahiba Yaïci & Federica Foiadelli, 2020. "An Algorithm for Optimization of Recharging Stops: A Case Study of Electric Vehicle Charging Stations on Canadian’s Ontario Highway 401," Energies, MDPI, vol. 13(8), pages 1-19, April.
    7. Motoaki, Yutaka & Shirk, Matthew G., 2017. "Consumer behavioral adaption in EV fast charging through pricing," Energy Policy, Elsevier, vol. 108(C), pages 178-183.
    8. Motalleb, Mahdi & Ghorbani, Reza, 2017. "Non-cooperative game-theoretic model of demand response aggregator competition for selling stored energy in storage devices," Applied Energy, Elsevier, vol. 202(C), pages 581-596.
    9. Bo Chen & Christophe Midler & Joël Ruet, 2019. "The development of electric vehicles in China: Market facts and regulatory trends," Post-Print hal-03085772, HAL.
    10. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    11. Bo Chen & Christophe Midler & Joël Ruet, 2018. "Le développement du véhicule électrique en Chine : réalités du marché et dynamiques réglementaires," Post-Print hal-03085769, HAL.
    12. Fa-Ping Wang & Jia-Li Yu & Peng Yang & Li-Xin Miao & Bin Ye, 2017. "Analysis of the Barriers to Widespread Adoption of Electric Vehicles in Shenzhen China," Sustainability, MDPI, vol. 9(4), pages 1-20, March.
    13. Diao, Qinghua & Sun, Wei & Yuan, Xinmei & Li, Lili & Zheng, Zhi, 2016. "Life-cycle private-cost-based competitiveness analysis of electric vehicles in China considering the intangible cost of traffic policies," Applied Energy, Elsevier, vol. 178(C), pages 567-578.
    14. Lin Ma & Yuefan Zhai & Tian Wu, 2019. "Operating Charging Infrastructure in China to Achieve Sustainable Transportation: The Choice between Company-Owned and Franchised Structures," Sustainability, MDPI, vol. 11(6), pages 1-22, March.
    15. Lin Ma & Qinchuan Du & Tian Wu, 2019. "Government Intervention and Automobile Industry Structure: Theory and Evidence from China," Sustainability, MDPI, vol. 11(17), pages 1-25, August.
    16. Tyfield, David & Zuev, Dennis, 2018. "Stasis, dynamism and emergence of the e-mobility system in China: A power relational perspective," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 259-270.
    17. Chen, Xiao & Wu, Tian & Zheng, Rui & Guo, Xiaoxian, 2018. "How vehicle market is segmented and influenced by subsidy policy: A theoretical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 776-782.
    18. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeswar Mahanta, 2018. "Review of recent trends in charging infrastructure planning for electric vehicles," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Tian & Shang, Zhe & Tian, Xin & Wang, Shouyang, 2016. "How hyperbolic discounting preference affects Chinese consumers’ consumption choice between conventional and electric vehicles," Energy Policy, Elsevier, vol. 97(C), pages 400-413.
    2. Anders F. Jensen & Thomas K. Rasmussen & Carlo G. Prato, 2020. "A Route Choice Model for Capturing Driver Preferences When Driving Electric and Conventional Vehicles," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    3. Sarmad Zaman Rajper & Johan Albrecht, 2020. "Prospects of Electric Vehicles in the Developing Countries: A Literature Review," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    4. Zhao, Xin & Doering, Otto C. & Tyner, Wallace E., 2015. "The economic competitiveness and emissions of battery electric vehicles in China," Applied Energy, Elsevier, vol. 156(C), pages 666-675.
    5. Larson, Paul D. & Viáfara, Jairo & Parsons, Robert V. & Elias, Arne, 2014. "Consumer attitudes about electric cars: Pricing analysis and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 299-314.
    6. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    7. Wu, Geng & Inderbitzin, Alessandro & Bening, Catharina, 2015. "Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments," Energy Policy, Elsevier, vol. 80(C), pages 196-214.
    8. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    9. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    10. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    11. Yang, Jie & Dong, Jing & Hu, Liang, 2018. "Design government incentive schemes for promoting electric taxis in China," Energy Policy, Elsevier, vol. 115(C), pages 1-11.
    12. Safari, M., 2018. "Battery electric vehicles: Looking behind to move forward," Energy Policy, Elsevier, vol. 115(C), pages 54-65.
    13. Tian Wu & Bohan Zeng & Yali He & Xin Tian & Xunmin Ou, 2017. "Sustainable Governance for the Opened Electric Vehicle Charging and Upgraded Facilities Market," Sustainability, MDPI, vol. 9(11), pages 1-22, November.
    14. Xingping Zhang & Rao Rao & Jian Xie & Yanni Liang, 2014. "The Current Dilemma and Future Path of China’s Electric Vehicles," Sustainability, MDPI, vol. 6(3), pages 1-27, March.
    15. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    16. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    17. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    18. Andriosopoulos, Kostas & Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2018. "The impact of age on Italian consumers' attitude toward alternative fuel vehicles," Renewable Energy, Elsevier, vol. 119(C), pages 299-308.
    19. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    20. Zhang, Xingping & Liang, Yanni & Yu, Enhai & Rao, Rao & Xie, Jian, 2017. "Review of electric vehicle policies in China: Content summary and effect analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 698-714.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:77:y:2015:i:c:p:216-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.