IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v89y2016icp284-293.html
   My bibliography  Save this article

Methodology for assessing electric vehicle charging infrastructure business models

Author

Listed:
  • Madina, Carlos
  • Zamora, Inmaculada
  • Zabala, Eduardo

Abstract

The analysis of economic implications of innovative business models in networked environments, as electro-mobility is, requires a global approach to ensure that all the involved actors obtain a benefit. Although electric vehicles (EVs) provide benefits for the society as a whole, there are a number of hurdles for their widespread adoption, mainly the high investment cost for the EV and for the infrastructure. Therefore, a sound business model must be built up for charging service operators, which allows them to recover their costs while, at the same time, offer EV users a charging price which makes electro-mobility comparable to internal combustion engine vehicles. For that purpose, three scenarios are defined, which present different EV charging alternatives, in terms of charging power and charging station ownership and accessibility. A case study is presented for each scenario and the required charging station usage to have a profitable business model is calculated. We demonstrate that private home charging is likely to be the preferred option for EV users who can charge at home, as it offers a lower total cost of ownership under certain conditions, even today. On the contrary, finding a profitable business case for fast charging requires more intensive infrastructure usage.

Suggested Citation

  • Madina, Carlos & Zamora, Inmaculada & Zabala, Eduardo, 2016. "Methodology for assessing electric vehicle charging infrastructure business models," Energy Policy, Elsevier, vol. 89(C), pages 284-293.
  • Handle: RePEc:eee:enepol:v:89:y:2016:i:c:p:284-293
    DOI: 10.1016/j.enpol.2015.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515302202
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bohnsack, René & Pinkse, Jonatan & Kolk, Ans, 2014. "Business models for sustainable technologies: Exploring business model evolution in the case of electric vehicles," Research Policy, Elsevier, vol. 43(2), pages 284-300.
    2. Eto, J. & Stoft, S. & Kito, S., 1998. "DSM shareholder incentives: recent designs and economic theory," Utilities Policy, Elsevier, vol. 7(1), pages 47-62, March.
    3. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    4. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    5. Abrardi, Laura & Cambini, Carlo, 2015. "Tariff regulation with energy efficiency goals," Energy Economics, Elsevier, vol. 49(C), pages 122-131.
    6. Schroeder, Andreas & Traber, Thure, 2012. "The economics of fast charging infrastructure for electric vehicles," Energy Policy, Elsevier, vol. 43(C), pages 136-144.
    7. San Román, Tomás Gómez & Momber, Ilan & Abbad, Michel Rivier & Sánchez Miralles, Álvaro, 2011. "Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships," Energy Policy, Elsevier, vol. 39(10), pages 6360-6375, October.
    8. Hannon, Matthew J. & Foxon, Timothy J. & Gale, William F., 2013. "The co-evolutionary relationship between Energy Service Companies and the UK energy system: Implications for a low-carbon transition," Energy Policy, Elsevier, vol. 61(C), pages 1031-1045.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    2. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
    3. Serradilla, Javier & Wardle, Josey & Blythe, Phil & Gibbon, Jane, 2017. "An evidence-based approach for investment in rapid-charging infrastructure," Energy Policy, Elsevier, vol. 106(C), pages 514-524.
    4. Hall, Stephen & Roelich, Katy, 2016. "Business model innovation in electricity supply markets: The role of complex value in the United Kingdom," Energy Policy, Elsevier, vol. 92(C), pages 286-298.
    5. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.
    6. Wang, Ying-Wei & Lin, Chuah-Chih, 2013. "Locating multiple types of recharging stations for battery-powered electric vehicle transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 76-87.
    7. Nian, Victor & Hari, M.P. & Yuan, Jun, 2019. "A new business model for encouraging the adoption of electric vehicles in the absence of policy support," Applied Energy, Elsevier, vol. 235(C), pages 1106-1117.
    8. Goldschmidt, Rüdiger & Richter, Andreas & Pfeil, Raphael, 2019. "Active stakeholder involvement and organisational tasks as factors for an effective communication and governance strategy in the promotion of e-taxis. Results from a field research lab," Energy Policy, Elsevier, vol. 135(C).
    9. LaMonaca, Sarah & Ryan, Lisa, 2022. "The state of play in electric vehicle charging services – A review of infrastructure provision, players, and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Xiaoli Sun & Zhengguo Li & Xiaolin Wang & Chengjiang Li, 2019. "Technology Development of Electric Vehicles: A Review," Energies, MDPI, vol. 13(1), pages 1-29, December.
    11. Lowitzsch, Jens & Kreutzer, Kaja & George, Jan & Croonenbroeck, Carsten & Breitschopf, Barbara, 2023. "Development prospects for energy communities in the EU identifying best practice and future opportunities using a morphological approach," Energy Policy, Elsevier, vol. 174(C).
    12. Rong, Ke & Shi, Yongjiang & Shang, Tianjiao & Chen, Yantai & Hao, Han, 2017. "Organizing business ecosystems in emerging electric vehicle industry: Structure, mechanism, and integrated configuration," Energy Policy, Elsevier, vol. 107(C), pages 234-247.
    13. Patt, Anthony & Aplyn, David & Weyrich, Philippe & van Vliet, Oscar, 2019. "Availability of private charging infrastructure influences readiness to buy electric cars," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 1-7.
    14. Huang, Youlin & Qian, Lixian, 2021. "Consumer adoption of electric vehicles in alternative business models," Energy Policy, Elsevier, vol. 155(C).
    15. Faria, Marta V. & Baptista, Patrícia C. & Farias, Tiago L., 2014. "Electric vehicle parking in European and American context: Economic, energy and environmental analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 110-121.
    16. Nair, Sujith & Paulose, Hanna, 2014. "Emergence of green business models: The case of algae biofuel for aviation," Energy Policy, Elsevier, vol. 65(C), pages 175-184.
    17. Datta, Souvik, 2019. "Decoupling and demand-side management: Evidence from the US electric industry," Energy Policy, Elsevier, vol. 132(C), pages 175-184.
    18. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Mona Kabus & Lars Nolting & Benedict J. Mortimer & Jan C. Koj & Wilhelm Kuckshinrichs & Rik W. De Doncker & Aaron Praktiknjo, 2020. "Environmental Impacts of Charging Concepts for Battery Electric Vehicles: A Comparison of On-Board and Off-Board Charging Systems Based on a Life Cycle Assessment," Energies, MDPI, vol. 13(24), pages 1-31, December.
    20. Anamarija Falkoni & Antun Pfeifer & Goran Krajačić, 2020. "Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs," Energies, MDPI, vol. 13(6), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:89:y:2016:i:c:p:284-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.