IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v146y2020ics0301421520304997.html
   My bibliography  Save this article

A deployment model of EV charging piles and its impact on EV promotion

Author

Listed:
  • Ma, Shao-Chao
  • Fan, Ying

Abstract

The construction of public-access electric vehicle charging piles is an important way for governments to promote electric vehicle adoption. The endogenous relationships among EVs, EV charging piles, and public attention are investigated via a panel vector autoregression model in this study to discover the current development rules and policy implications from the historical panel data in China. Five policies related to EV charging piles, EV purchase subsidies, commercial land prices, and retail gasoline prices are controlled as exogenous variables in the model. The results indicate that EV and charging piles diffusion do interact, and public attention plays a nexus role in EV and charging piles deployment. Reducing the electricity rate is the most effective policy approach to promote EV charging piles. Subsidising the construction cost has an insignificant impact on charging piles diffusion in this study, and several possible reasons have been discussed. The promotion effect of direct-current charging piles on EV sales is twice that of alternating-current charging piles in the one-year simulation of our model. Increasing the number of EV charging piles has a significant impact on battery electric vehicle sales but not on plug-in hybrid electric vehicle sales.

Suggested Citation

  • Ma, Shao-Chao & Fan, Ying, 2020. "A deployment model of EV charging piles and its impact on EV promotion," Energy Policy, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:enepol:v:146:y:2020:i:c:s0301421520304997
    DOI: 10.1016/j.enpol.2020.111777
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520304997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    2. Zhang, Xian & Wang, Ke & Hao, Yu & Fan, Jing-Li & Wei, Yi-Ming, 2013. "The impact of government policy on preference for NEVs: The evidence from China," Energy Policy, Elsevier, vol. 61(C), pages 382-393.
    3. Muratori, Matteo & Elgqvist, Emma & Cutler, Dylan & Eichman, Joshua & Salisbury, Shawn & Fuller, Zachary & Smart, John, 2019. "Technology solutions to mitigate electricity cost for electric vehicle DC fast charging," Applied Energy, Elsevier, vol. 242(C), pages 415-423.
    4. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    5. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2016. "The effect of policy incentives on electric vehicle adoption," Energy Policy, Elsevier, vol. 94(C), pages 94-103.
    6. Peterson, Scott B. & Michalek, Jeremy J., 2013. "Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption," Energy Policy, Elsevier, vol. 52(C), pages 429-438.
    7. Shanjun Li & Lang Tong & Jianwei Xing & Yiyi Zhou, 2017. "The Market for Electric Vehicles: Indirect Network Effects and Policy Design," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(1), pages 89-133.
    8. Sims, Christopher A, 1980. "Comparison of Interwar and Postwar Business Cycles: Monetarism Reconsidered," American Economic Review, American Economic Association, vol. 70(2), pages 250-257, May.
    9. Lopez-Behar, Diana & Tran, Martino & Froese, Thomas & Mayaud, Jerome R. & Herrera, Omar E. & Merida, Walter, 2019. "Charging infrastructure for electric vehicles in Multi-Unit Residential Buildings: Mapping feedbacks and policy recommendations," Energy Policy, Elsevier, vol. 126(C), pages 444-451.
    10. Ling Tang & Jiabao Qu & Zhifu Mi & Xin Bo & Xiangyu Chang & Laura Diaz Anadon & Shouyang Wang & Xiaoda Xue & Shibei Li & Xin Wang & Xiaohong Zhao, 2019. "Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards," Nature Energy, Nature, vol. 4(11), pages 929-938, November.
    11. Bagliano, Fabio C. & Favero, Carlo A., 1998. "Measuring monetary policy with VAR models: An evaluation," European Economic Review, Elsevier, vol. 42(6), pages 1069-1112, June.
    12. Lof, Matthijs & Malinen, Tuomas, 2014. "Does sovereign debt weaken economic growth? A panel VAR analysis," Economics Letters, Elsevier, vol. 122(3), pages 403-407.
    13. Ma, Shao-Chao & Fan, Ying & Feng, Lianyong, 2017. "An evaluation of government incentives for new energy vehicles in China focusing on vehicle purchasing restrictions," Energy Policy, Elsevier, vol. 110(C), pages 609-618.
    14. Canova, Fabio & Ciccarelli, Matteo, 2013. "Panel Vector Autoregressive Models: A Survey," CEPR Discussion Papers 9380, C.E.P.R. Discussion Papers.
    15. Faria, Marta V. & Baptista, Patrícia C. & Farias, Tiago L., 2014. "Electric vehicle parking in European and American context: Economic, energy and environmental analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 110-121.
    16. Larson, Paul D. & Viáfara, Jairo & Parsons, Robert V. & Elias, Arne, 2014. "Consumer attitudes about electric cars: Pricing analysis and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 299-314.
    17. Iuliia Naidenova & Petr Parshakov, 2013. "Intellectual Capital Investments: Evidence from Panel Var Analysis," HSE Working papers WP BRP 11/FE/2013, National Research University Higher School of Economics.
    18. Qiu, Y.Q. & Zhou, P. & Sun, H.C., 2019. "Assessing the effectiveness of city-level electric vehicle policies in China," Energy Policy, Elsevier, vol. 130(C), pages 22-31.
    19. Krause, Rachel M. & Carley, Sanya R. & Lane, Bradley W. & Graham, John D., 2013. "Perception and reality: Public knowledge of plug-in electric vehicles in 21 U.S. cities," Energy Policy, Elsevier, vol. 63(C), pages 433-440.
    20. Alghoul, M.A. & Hammadi, F.Y. & Amin, Nowshad & Asim, Nilofar, 2018. "The role of existing infrastructure of fuel stations in deploying solar charging systems, electric vehicles and solar energy: A preliminary analysis," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 317-326.
    21. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    22. Yuan, Xueliang & Liu, Xin & Zuo, Jian, 2015. "The development of new energy vehicles for a sustainable future: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 298-305.
    23. Wang, Shanyong & Li, Jun & Zhao, Dingtao, 2017. "The impact of policy measures on consumer intention to adopt electric vehicles: Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 14-26.
    24. Zhu, Lijing & Zhang, Qi & Lu, Huihui & Li, Hailong & Li, Yan & McLellan, Benjamin & Pan, Xunzhang, 2017. "Study on crowdfunding’s promoting effect on the expansion of electric vehicle charging piles based on game theory analysis," Applied Energy, Elsevier, vol. 196(C), pages 238-248.
    25. Canepa, Kathryn & Hardman, Scott & Tal, Gil, 2019. "An early look at plug-in electric vehicle adoption in disadvantaged communities in California," Transport Policy, Elsevier, vol. 78(C), pages 19-30.
    26. Serradilla, Javier & Wardle, Josey & Blythe, Phil & Gibbon, Jane, 2017. "An evidence-based approach for investment in rapid-charging infrastructure," Energy Policy, Elsevier, vol. 106(C), pages 514-524.
    27. Love, Inessa & Zicchino, Lea, 2006. "Financial development and dynamic investment behavior: Evidence from panel VAR," The Quarterly Review of Economics and Finance, Elsevier, vol. 46(2), pages 190-210, May.
    28. Motoaki, Yutaka & Yi, Wenqi & Salisbury, Shawn, 2018. "Empirical analysis of electric vehicle fast charging under cold temperatures," Energy Policy, Elsevier, vol. 122(C), pages 162-168.
    29. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    30. Madina, Carlos & Zamora, Inmaculada & Zabala, Eduardo, 2016. "Methodology for assessing electric vehicle charging infrastructure business models," Energy Policy, Elsevier, vol. 89(C), pages 284-293.
    31. Katrin Assenmacher-Wesche & Stefan Gerlach, 2008. "Monetary policy, asset prices and macroeconomic conditions : a panel-VAR study," Working Paper Research 149, National Bank of Belgium.
    32. Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.
    33. Li, Zhe & Ouyang, Minggao, 2011. "The pricing of charging for electric vehicles in China—Dilemma and solution," Energy, Elsevier, vol. 36(9), pages 5765-5778.
    34. Sadeghi-Barzani, Payam & Rajabi-Ghahnavieh, Abbas & Kazemi-Karegar, Hosein, 2014. "Optimal fast charging station placing and sizing," Applied Energy, Elsevier, vol. 125(C), pages 289-299.
    35. Ma, Shao-Chao & Xu, Jin-Hua & Fan, Ying, 2019. "Willingness to pay and preferences for alternative incentives to EV purchase subsidies: An empirical study in China," Energy Economics, Elsevier, vol. 81(C), pages 197-215.
    36. Tao, Ye & Huang, Miaohua & Yang, Lan, 2018. "Data-driven optimized layout of battery electric vehicle charging infrastructure," Energy, Elsevier, vol. 150(C), pages 735-744.
    37. Morrissey, Patrick & Weldon, Peter & O’Mahony, Margaret, 2016. "Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour," Energy Policy, Elsevier, vol. 89(C), pages 257-270.
    38. Xie, Fei & Liu, Changzheng & Li, Shengyin & Lin, Zhenhong & Huang, Yongxi, 2018. "Long-term strategic planning of inter-city fast charging infrastructure for battery electric vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 261-276.
    39. Zhu, Lijing & Wang, Peize & Zhang, Qi, 2019. "Indirect network effects in China’s electric vehicle diffusion under phasing out subsidies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    40. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    41. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    42. Liu, Jian, 2012. "Electric vehicle charging infrastructure assignment and power grid impacts assessment in Beijing," Energy Policy, Elsevier, vol. 51(C), pages 544-557.
    43. Zhang, Qi & Li, Hailong & Zhu, Lijing & Campana, Pietro Elia & Lu, Huihui & Wallin, Fredrik & Sun, Qie, 2018. "Factors influencing the economics of public charging infrastructures for EV – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 500-509.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jingjing & Nian, Victor & Jiao, Jianling, 2022. "Diffusion and benefits evaluation of electric vehicles under policy interventions based on a multiagent system dynamics model," Applied Energy, Elsevier, vol. 309(C).
    2. Marceli Adriane Schvartz & Amanda Lange Salvia & Luciana Londero Brandli & Walter Leal Filho & Lucas Veiga Avila, 2024. "The Electric Vehicle Market in Brazil: A Systematic Literature Review of Factors Influencing Purchase Decisions," Sustainability, MDPI, vol. 16(11), pages 1-23, May.
    3. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    4. Chang, Tai-Wei, 2023. "An indispensable role in promoting the electric vehicle Industry: An empirical test to explore the integration framework of electric vehicle charger and electric vehicle purchase behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    5. Liu, Bingchun & Song, Chengyuan & Liang, Xiaoqin & Lai, Mingzhao & Yu, Zhecheng & Ji, Jie, 2023. "Regional differences in China's electric vehicle sales forecasting: Under supply-demand policy scenarios," Energy Policy, Elsevier, vol. 177(C).
    6. Zunian Luo, 2022. "Powering Up a Slow Charging Market: How Do Government Subsidies Affect Charging Station Supply?," Papers 2210.14908, arXiv.org, revised Jan 2023.
    7. Li, Yina & Liang, Chenchen & Ye, Fei & Zhao, Xiande, 2023. "Designing government subsidy schemes to promote the electric vehicle industry: A system dynamics model perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    8. Yanting Gu & Fiorenza Belussi & Rajneesh Narula, 2023. "Entering European countries: advantages and difficulties for Chinese electric vehicle firms," "Marco Fanno" Working Papers 0302, Dipartimento di Scienze Economiche "Marco Fanno".
    9. Yih-Her Yan & Rong-Ceng Leou & Chien-Chin Ko, 2024. "A Model for Electrifying Fire Ambulance Service Stations Considering Practical Service Data and Charging Strategies," Energies, MDPI, vol. 17(6), pages 1-13, March.
    10. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    11. Zhu, Min & Dong, Peiwu & Ju, Yanbing & Li, Jiajun & Ran, Lun, 2023. "Effects of government subsidies on heavy-duty hydrogen fuel cell truck penetration: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 183(C).
    12. Konstantina Anastasiadou & Nikolaos Gavanas, 2022. "State-of-the-Art Review of the Key Factors Affecting Electric Vehicle Adoption by Consumers," Energies, MDPI, vol. 15(24), pages 1-23, December.
    13. Liu, Bingchun & Song, Chengyuan & Wang, Qingshan & Zhang, Xinming & Chen, Jiali, 2022. "Research on regional differences of China's new energy vehicles promotion policies: A perspective of sales volume forecasting," Energy, Elsevier, vol. 248(C).
    14. Chen, Rongkai & Fan, Ruguo & Wang, Dongxue & Yao, Qianyi, 2023. "Effects of multiple incentives on electric vehicle charging infrastructure deployment in China: An evolutionary analysis in complex network," Energy, Elsevier, vol. 264(C).
    15. Wang, Yitong & Fan, Ruguo & Du, Kang & Bao, Xuguang, 2023. "Exploring incentives to promote electric vehicles diffusion under subsidy abolition: An evolutionary analysis on multiplex consumer social networks," Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Kalthaus & Jiatang Sun, 2021. "Determinants of Electric Vehicle Diffusion in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(3), pages 473-510, November.
    2. Kim, Hyunjung & Kim, Dae-Wook & Kim, Man-Keun, 2022. "Economics of charging infrastructure for electric vehicles in Korea," Energy Policy, Elsevier, vol. 164(C).
    3. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    4. Jingnan Zhang & Shichun Xu & Zhengxia He & Chengze Li & Xiaona Meng, 2022. "Factors Influencing Adoption Intention for Electric Vehicles under a Subsidy Deduction: From Different City-Level Perspectives," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    5. Zhang, Lihui & Zhao, Zhenli & Yang, Meng & Li, Songrui, 2020. "A multi-criteria decision method for performance evaluation of public charging service quality," Energy, Elsevier, vol. 195(C).
    6. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    7. Zhang, Qi & Li, Hailong & Zhu, Lijing & Campana, Pietro Elia & Lu, Huihui & Wallin, Fredrik & Sun, Qie, 2018. "Factors influencing the economics of public charging infrastructures for EV – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 500-509.
    8. Kim, Moon-Koo & Oh, Jeesun & Park, Jong-Hyun & Joo, Changlim, 2018. "Perceived value and adoption intention for electric vehicles in Korea: Moderating effects of environmental traits and government supports," Energy, Elsevier, vol. 159(C), pages 799-809.
    9. Qiu, Y.Q. & Zhou, P. & Sun, H.C., 2019. "Assessing the effectiveness of city-level electric vehicle policies in China," Energy Policy, Elsevier, vol. 130(C), pages 22-31.
    10. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    11. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    12. Liu, Chang & Liu, Yuan & Zhang, Dayong & Xie, Chunping, 2022. "The capital market responses to new energy vehicle (NEV) subsidies: An event study on China," Energy Economics, Elsevier, vol. 105(C).
    13. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    14. Sumon Kumar Bhaumik & Manisha Chakrabarty & Ali M. Kutan & Ekta Selarka, 2021. "How Effective are Stock Market Reforms in Emerging Market Economies? Evidence from a Panel VAR Model of the Indian Stock Market," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(4), pages 795-818, December.
    15. Joan Costa-Font & Cristina Vilaplana-Prieto, 2023. "‘Investing’ in care for old age? An examination of long-term care expenditure dynamics and its spillovers," Empirical Economics, Springer, vol. 64(1), pages 1-30, January.
    16. Abebe Hailemariam & Tutsirai Sakutukwa & Ratbek Dzhumashev, 2021. "Long-term determinants of income inequality: evidence from panel data over 1870–2016," Empirical Economics, Springer, vol. 61(4), pages 1935-1958, October.
    17. Kounetas, Kostas & Napolitano, Oreste & Stavropoulos, Spyridon & Burger, Martijn, 2018. "European Regional Productive Performance under a Metafrontier Framework. The role of patents and human capital on technology gap?," MPRA Paper 88957, University Library of Munich, Germany, revised 17 Jul 2018.
    18. Zhang, Junjie & Jia, Rongwen & Yang, Hangjun & Dong, Kangyin, 2022. "Does electric vehicle promotion in the public sector contribute to urban transport carbon emissions reduction?," Transport Policy, Elsevier, vol. 125(C), pages 151-163.
    19. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Hubacek, Klaus, 2022. "Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry," Energy, Elsevier, vol. 259(C).
    20. Zhu, Lijing & Wang, Jingzhou & Farnoosh, Arash & Pan, Xunzhang, 2022. "A game-theory analysis of electric vehicle adoption in Beijing under license plate control policy," Energy, Elsevier, vol. 244(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:146:y:2020:i:c:s0301421520304997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.