IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1445-d1358686.html
   My bibliography  Save this article

A Model for Electrifying Fire Ambulance Service Stations Considering Practical Service Data and Charging Strategies

Author

Listed:
  • Yih-Her Yan

    (Department of Electrical Engineering, National Formosa University, Yunlin County 632, Taiwan)

  • Rong-Ceng Leou

    (Department of Electrical Engineering, National Formosa University, Yunlin County 632, Taiwan)

  • Chien-Chin Ko

    (Mituo Branch of Fire Bureau, Kaohsiung City Government, Kaohsiung 833, Taiwan)

Abstract

Due to concerns with air pollution and climate change, governments and transport operators around the world have engaged in transforming their fossil-fueled vehicles into electric vehicles (EVs). It is essential to build a model for the electrifying process to minimize the operation costs. This paper presents a systematic analytical approach for the electrification of a fire ambulance service station. This approach begins with the selection of suitable EVs to replace the current service vehicles. Subsequently, an in-depth analysis is conducted to determine the practical utilization of EVs at the station. The model proposes two charging strategies: immediate charging upon an EVs’ return and smart charging. Based on the chosen EVs and charging strategies, a comprehensive assessment of the load profiles for the planned EV charging station is performed. In accordance with the load profiles, a mathematical model to minimize the infrastructure and operation costs of the charging station is proposed. Various pricing schemes are compared to identify the most efficient pricing scheme for the charging station, and economic analyses of the EVs and traditional ambulance vehicles are proposed in this paper. The test results indicate that the progressive pricing scheme is well suited for immediate charging strategies, whereas smart charging should opt for the time-of-use pricing scheme. Selecting the appropriate pricing scheme has the potential to significantly reduce electric energy costs.

Suggested Citation

  • Yih-Her Yan & Rong-Ceng Leou & Chien-Chin Ko, 2024. "A Model for Electrifying Fire Ambulance Service Stations Considering Practical Service Data and Charging Strategies," Energies, MDPI, vol. 17(6), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1445-:d:1358686
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1445/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1445/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Shao-Chao & Fan, Ying, 2020. "A deployment model of EV charging piles and its impact on EV promotion," Energy Policy, Elsevier, vol. 146(C).
    2. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    2. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    3. Li, Jingjing & Nian, Victor & Jiao, Jianling, 2022. "Diffusion and benefits evaluation of electric vehicles under policy interventions based on a multiagent system dynamics model," Applied Energy, Elsevier, vol. 309(C).
    4. Ruan, Jiageng & Walker, Paul & Zhang, Nong, 2016. "A comparative study energy consumption and costs of battery electric vehicle transmissions," Applied Energy, Elsevier, vol. 165(C), pages 119-134.
    5. Ruan, Jiageng & Walker, Paul D. & Watterson, Peter A. & Zhang, Nong, 2016. "The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle," Applied Energy, Elsevier, vol. 183(C), pages 1240-1258.
    6. Paul Baustert & Tomás Navarrete Gutiérrez & Thomas Gibon & Laurent Chion & Tai-Yu Ma & Gabriel Leite Mariante & Sylvain Klein & Philippe Gerber & Enrico Benetto, 2019. "Coupling Activity-Based Modeling and Life Cycle Assessment—A Proof-of-Concept Study on Cross-Border Commuting in Luxembourg," Sustainability, MDPI, vol. 11(15), pages 1-24, July.
    7. Daraei, Mahsa & Avelin, Anders & Dotzauer, Erik & Thorin, Eva, 2019. "Evaluation of biofuel production integrated with existing CHP plants and the impacts on production planning of the system – A case study," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Wee, Sherilyn & Coffman, Makena & Allen, Scott, 2020. "EV driver characteristics: Evidence from Hawaii," Transport Policy, Elsevier, vol. 87(C), pages 33-40.
    9. Maxwell Woody & Michael T. Craig & Parth T. Vaishnav & Geoffrey M. Lewis & Gregory A. Keoleian, 2022. "Optimizing future cost and emissions of electric delivery vehicles," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1108-1122, June.
    10. Zunian Luo, 2022. "Powering Up a Slow Charging Market: How Do Government Subsidies Affect Charging Station Supply?," Papers 2210.14908, arXiv.org, revised Jan 2023.
    11. Yanting Gu & Fiorenza Belussi & Rajneesh Narula, 2023. "Entering European countries: advantages and difficulties for Chinese electric vehicle firms," "Marco Fanno" Working Papers 0302, Dipartimento di Scienze Economiche "Marco Fanno".
    12. Zhang, Zhe & Yu, Qing & Gao, Kun & He, Hong-Di & Liu, Yang & Huang, Haichao, 2025. "Carbon emission reduction benefits of ride-hailing vehicle electrification considering energy structure," Applied Energy, Elsevier, vol. 377(PA).
    13. Siqin Xiong & Junping Ji & Xiaoming Ma, 2019. "Comparative Life Cycle Energy and GHG Emission Analysis for BEVs and PhEVs: A Case Study in China," Energies, MDPI, vol. 12(5), pages 1-17, March.
    14. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    15. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    16. Wang, Yitong & Fan, Ruguo & Du, Kang & Bao, Xuguang, 2023. "Exploring incentives to promote electric vehicles diffusion under subsidy abolition: An evolutionary analysis on multiplex consumer social networks," Energy, Elsevier, vol. 276(C).
    17. Chu, Yi & Yu, Hui & Li, Ying, 2024. "How do supply- and demand-side dynamics and subsidies affect the prospects for electric vehicle battery swapping services? Evidence from an evolutionary analysis," Energy, Elsevier, vol. 308(C).
    18. Fusco Rovai, Fernando & Regina da Cal Seixas, Sônia & Keutenedjian Mady, Carlos Eduardo, 2023. "Regional energy policies for electrifying car fleets," Energy, Elsevier, vol. 278(PA).
    19. Antje-Mareike Dietrich & Christian Leßmann & Arne Steinkraus, 2016. "Kaufprämien für Elektroautos: Politik auf dem Irrweg?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 69(11), pages 21-26, June.
    20. Sergio Maria Patella & Flavio Scrucca & Francesco Asdrubali & Stefano Carrese, 2019. "Traffic Simulation-Based Approach for A Cradle-to-Grave Greenhouse Gases Emission Model," Sustainability, MDPI, vol. 11(16), pages 1-14, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1445-:d:1358686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.