IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v42y2012icp95-104.html
   My bibliography  Save this article

Ex-ante evaluation of profitability and government's subsidy policy on vehicle-to-grid system

Author

Listed:
  • Hong, Junhee
  • Koo, Yoonmo
  • Jeong, Gicheol
  • Lee, Jongsu

Abstract

Although the electric vehicle reduces pollutant emissions and results in reduced energy costs, lack of battery charging infrastructure and relatively high vehicle prices create challenges to the automobile industry and affect government support policies. To create a battery charging infrastructure, such as a vehicle-to-grid system, stakeholders need a quantitative analysis that decreases profitability uncertainty. The high cost of an electric vehicle can be offset by government subsidies that promote early marketing efforts, but an ex-ante evaluation of consumer demand is needed to analyze the effectiveness of any policy. This study provides information about optimal pricing based on consumer demand as well as the social welfare change effected by possible government subsidy polices for electric vehicles. Results show that the maximum profit for a vehicle-to-grid service provider will be 1.27trillion Korean won/year with an annual subscription fee of 0.65million Korean won. The government subsidy of 1 trillion Korean won, given annually, will increase social welfare by 1.94trillion won and also boost the profit of vehicle-to-grid service provider to 1.98trillion won.

Suggested Citation

  • Hong, Junhee & Koo, Yoonmo & Jeong, Gicheol & Lee, Jongsu, 2012. "Ex-ante evaluation of profitability and government's subsidy policy on vehicle-to-grid system," Energy Policy, Elsevier, vol. 42(C), pages 95-104.
  • Handle: RePEc:eee:enepol:v:42:y:2012:i:c:p:95-104
    DOI: 10.1016/j.enpol.2011.11.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511009475
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bunch, David S. & Bradley, Mark & Golob, Thomas F. & Kitamura, Ryuichi & Occhiuzzo, Gareth P., 1993. "Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(3), pages 237-253, May.
    2. Yeonbae Kim & Gicheol Jeong & Jiwoon Ahn & Jeong-Dong Lee, 2007. "Consumer preferences for alternative fuel vehicles in South Korea," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 7(4), pages 327-342.
    3. Skerlos, Steven J. & Winebrake, James J., 2010. "Targeting plug-in hybrid electric vehicle policies to increase social benefits," Energy Policy, Elsevier, vol. 38(2), pages 705-708, February.
    4. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    5. Sovacool, Benjamin K. & Hirsh, Richard F., 2009. "Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition," Energy Policy, Elsevier, vol. 37(3), pages 1095-1103, March.
    6. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    7. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    8. Guille, Christophe & Gross, George, 2009. "A conceptual framework for the vehicle-to-grid (V2G) implementation," Energy Policy, Elsevier, vol. 37(11), pages 4379-4390, November.
    9. Perujo, Adolfo & Ciuffo, Biagio, 2010. "The introduction of electric vehicles in the private fleet: Potential impact on the electric supply system and on the environment. A case study for the Province of Milan, Italy," Energy Policy, Elsevier, vol. 38(8), pages 4549-4561, August.
    10. Simonson, Itamar & Kivetz, Ran, 2000. "The Effects of Incomplete Information on Consumer Choice," Research Papers 1609, Stanford University, Graduate School of Business.
    11. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    12. Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
    13. Allenby, Greg M. & Rossi, Peter E., 1998. "Marketing models of consumer heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 57-78, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zulkarnain & Pekka Leviäkangas & Tuomo Kinnunen & Pekka Kess, 2014. "The Electric Vehicles Ecosystem Model: Construct, Analysis and Identification of Key Challenges," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 12(3 (Fall)), pages 253-277.
    2. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Kim, Imjung & Kim, Junghun & Lee, Jongsu, 2020. "Dynamic analysis of well-to-wheel electric and hydrogen vehicles greenhouse gas emissions: Focusing on consumer preferences and power mix changes in South Korea," Applied Energy, Elsevier, vol. 260(C).
    4. Charle Augusto Londoño Henao, 2020. "Cost-Efficiency Index of the Development Plan of Medellín, 2015," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(1), pages 335-367, November.
    5. Kwan Byum Maeng & Jiyeon Jung & Yoonmo Koo, 2019. "Quantitative Analysis of Consumer Preferences of Windows Set in South Korea: The Role of Energy Efficiency Levels," Energies, MDPI, Open Access Journal, vol. 12(9), pages 1-1, May.
    6. Cansino, José M. & Román, Rocío & Colinet, María J., 2018. "Two smart energy management models for the Spanish electricity system," Utilities Policy, Elsevier, vol. 50(C), pages 60-72.
    7. Jiyeon Jung & Yoonmo Koo, 2018. "Analyzing the Effects of Car Sharing Services on the Reduction of Greenhouse Gas (GHG) Emissions," Sustainability, MDPI, Open Access Journal, vol. 10(2), pages 1-1, February.
    8. Kim, Junghun & Seung, Hyunchan & Lee, Jongsu & Ahn, Joongha, 2020. "Asymmetric preference and loss aversion for electric vehicles: The reference-dependent choice model capturing different preference directions," Energy Economics, Elsevier, vol. 86(C).
    9. Zhishuang Zhu & Hua Liao, 2019. "Do subsidies improve the financial performance of renewable energy companies? Evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 241-256, January.
    10. Shafiei, Ehsan & Davidsdottir, Brynhildur & Fazeli, Reza & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2018. "Macroeconomic effects of fiscal incentives to promote electric vehicles in Iceland: Implications for government and consumer costs," Energy Policy, Elsevier, vol. 114(C), pages 431-443.
    11. Shin, Jungwoo & Hwang, Won-Sik & Choi, Hyundo, 2019. "Can hydrogen fuel vehicles be a sustainable alternative on vehicle market?: Comparison of electric and hydrogen fuel cell vehicles," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 239-248.
    12. Park, Yuri & Koo, Yoonmo, 2016. "An empirical analysis of switching cost in the smartphone market in South Korea," Telecommunications Policy, Elsevier, vol. 40(4), pages 307-318.
    13. Byun, Hyunsuk & Shin, Jungwoo & Lee, Chul-Yong, 2018. "Using a discrete choice experiment to predict the penetration possibility of environmentally friendly vehicles," Energy, Elsevier, vol. 144(C), pages 312-321.
    14. Dongnyok Shim & Seung Wan Kim & Jörn Altmann & Yong Tae Yoon & Jin Gyo Kim, 2018. "Key Features of Electric Vehicle Diffusion and Its Impact on the Korean Power Market," Sustainability, MDPI, Open Access Journal, vol. 10(6), pages 1-1, June.
    15. Noel, Lance & Sovacool, Benjamin K., 2016. "Why Did Better Place Fail?: Range anxiety, interpretive flexibility, and electric vehicle promotion in Denmark and Israel," Energy Policy, Elsevier, vol. 94(C), pages 377-386.
    16. HyungBin Moon & Hyunhong Choi & Jongsu Lee & Ki Soo Lee, 2017. "Attitudes in Korea toward Introducing Smart Policing Technologies: Differences between the General Public and Police Officers," Sustainability, MDPI, Open Access Journal, vol. 9(10), pages 1-1, October.
    17. Sánchez-Braza, Antonio & Cansino, José M. & Lerma, Enrique, 2014. "Main drivers for local tax incentives to promote electric vehicles: The Spanish case," Transport Policy, Elsevier, vol. 36(C), pages 1-9.
    18. Kyuho Maeng & Sungmin Ko & Jungwoo Shin & Youngsang Cho, 2020. "How Much Electricity Sharing Will Electric Vehicle Owners Allow from Their Battery? Incorporating Vehicle-to-Grid Technology and Electricity Generation Mix," Energies, MDPI, Open Access Journal, vol. 13(16), pages 1-1, August.

    More about this item

    Keywords

    Electric vehicles; Mixed logit; Vehicle-to-grid;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:42:y:2012:i:c:p:95-104. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.