IDEAS home Printed from https://ideas.repec.org/a/eee/chieco/v21y2010i2p346-354.html
   My bibliography  Save this article

Explaining production inefficiency in China's agriculture using data envelopment analysis and semi-parametric bootstrapping

Author

Listed:
  • Monchuk, Daniel C.
  • Chen, Zhuo
  • Bonaparte, Yosef

Abstract

In this paper we examine more closely the factors associated with production inefficiency in China's agriculture. The approach we take involves a two-stage process where output efficiency scores are first estimated using data envelopment analysis, and then in the second stage, variation in the resulting efficiency scores is explained using a truncated regression model with inference based on a semi-parametric bootstrap routine. Among the results we find that a heavy industrial presence is associated with reduced agricultural production efficiency and may be an indication that externalities from the industrial process, such as air and ground water pollution, affect agricultural production. We also find evidence that counties with a large percentage of the rural labor force engaged in agriculture tend to be less efficient, and suggests that nurturing and promoting growth of non-primary agriculture may lead to more efficient use of labor resources in agriculture.

Suggested Citation

  • Monchuk, Daniel C. & Chen, Zhuo & Bonaparte, Yosef, 2010. "Explaining production inefficiency in China's agriculture using data envelopment analysis and semi-parametric bootstrapping," China Economic Review, Elsevier, vol. 21(2), pages 346-354, June.
  • Handle: RePEc:eee:chieco:v:21:y:2010:i:2:p:346-354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1043-951X(10)00008-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhuo & Huffman, Wallace E. & Rozelle, Scott, 2009. "Farm technology and technical efficiency: Evidence from four regions in China," China Economic Review, Elsevier, vol. 20(2), pages 153-161, June.
    2. Gong, Byeong-Ho & Sickles, Robin C., 1992. "Finite sample evidence on the performance of stochastic frontiers and data envelopment analysis using panel data," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 259-284.
    3. Jean-Paul Chavas & Ragan Petrie & Michael Roth, 2005. "Farm Household Production Efficiency: Evidence from The Gambia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(1), pages 160-179.
    4. GIJBELS, Irène & MAMMEN, Enno & PARK, Byeong U. & SIMAR, Léopold, 1997. "On estimation of monotone and concave frontier functions," LIDAM Discussion Papers CORE 1997031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Krusekopf, Charles C., 2002. "Diversity in land-tenure arrangements under the household responsibility system in China," China Economic Review, Elsevier, vol. 13(2-3), pages 297-312.
    6. Maria Alberta Oliveira & Carlos Santos, 2005. "Assessing school efficiency in Portugal using FDH and bootstrapping," Applied Economics, Taylor & Francis Journals, vol. 37(8), pages 957-968.
    7. Henry Tulkens & Philippe Eeckaut, 2006. "Nonparametric Efficiency, Progress and Regress Measures For Panel Data: Methodological Aspects," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 395-429, Springer.
    8. Harold Fried & Shelton Schmidt & Suthathip Yaisawarng, 1999. "Incorporating the Operating Environment Into a Nonparametric Measure of Technical Efficiency," Journal of Productivity Analysis, Springer, vol. 12(3), pages 249-267, November.
    9. Unknown, 2002. "China'S Food And Agriculture: Issues For The 21st Century," Agricultural Information Bulletins 33723, United States Department of Agriculture, Economic Research Service.
    10. Lin, Justin Yifu, 1992. "Rural Reforms and Agricultural Growth in China," American Economic Review, American Economic Association, vol. 82(1), pages 34-51, March.
    11. Fan, Shenggen & Zhang, Xiaobo, 2002. "Production and Productivity Growth in Chinese Agriculture: New National and Regional Measures," Economic Development and Cultural Change, University of Chicago Press, vol. 50(4), pages 819-838, July.
    12. Abdulai, Awudu & Huffman, Wallace, 2000. "Structural Adjustment and Economic Efficiency of Rice Farmers in Northern Ghana," Economic Development and Cultural Change, University of Chicago Press, vol. 48(3), pages 503-520, April.
    13. Mao, Weining & Koo, Won W., 1997. "Productivity growth, technological progress, and efficiency change in chinese agriculture after rural economic reforms: A DEA approach," China Economic Review, Elsevier, vol. 8(2), pages 157-174.
    14. Shujie Yao & Zinan Liu, 1998. "Determinants of Grain Production and Technical Efficiency in China," Journal of Agricultural Economics, Wiley Blackwell, vol. 49(2), pages 171-184, June.
    15. Wang, Jirong & Cramer, Gail L. & Wailes, Eric J., 1996. "Production efficiency of Chinese agriculture: evidence from rural household survey data," Agricultural Economics, Blackwell, vol. 15(1), pages 17-28, September.
    16. Dong, Xiao-yuan & Putterman, Louis, 1997. "Productivity and Organization in China's Rural Industries: A Stochastic Frontier Analysis," Journal of Comparative Economics, Elsevier, vol. 24(2), pages 181-201, April.
    17. Loren Tauer, 2001. "Input aggregation and computed technical efficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 8(5), pages 295-297.
    18. Jirong Wang & Eric J. Wailes & Gail L. Cramer, 1996. "A Shadow-Price Frontier Measurement of Profit Efficiency in Chinese Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(1), pages 146-156.
    19. Maria Sousa & Borko Stošić, 2005. "Technical Efficiency of the Brazilian Municipalities: Correcting Nonparametric Frontier Measurements for Outliers," Journal of Productivity Analysis, Springer, vol. 24(2), pages 157-181, October.
    20. Carter, Colin A. & Chen, Jing & Chu, Baojin, 2003. "Agricultural productivity growth in China: farm level versus aggregate measurement," China Economic Review, Elsevier, vol. 14(1), pages 53-71.
    21. Darold Barnum & John Gleason, 2008. "Bias and precision in the DEA two-stage method," Applied Economics, Taylor & Francis Journals, vol. 40(18), pages 2305-2311.
    22. Rolf Fare & Valentin Zelenyuk, 2002. "Input aggregation and technical efficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 9(10), pages 635-636.
    23. Jirong Wang & Gail L. Cramer & Eric J. Wailes, 1996. "Production efficiency of Chinese agriculture: evidence from rural household survey data," Agricultural Economics, International Association of Agricultural Economists, vol. 15(1), pages 17-28, September.
    24. Weiming Tian & Guang Wan, 2000. "Technical Efficiency and Its Determinants in China's Grain Production," Journal of Productivity Analysis, Springer, vol. 13(2), pages 159-174, March.
    25. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    26. Timo Kuosmanen & Diemuth Pemsl & Justus Wesseler, 2006. "Specification and Estimation of Production Functions Involving Damage Control Inputs: A Two-Stage, Semiparametric Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(2), pages 499-511.
    27. Suzhen Zhu & Paul Ellinger & C. Richard Shumway, 1995. "The choice of functional form and estimation of banking inefficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 2(10), pages 375-379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Urban Population 51.27% | Rural Population 48.73%
      by Rich in All Roads Lead to China on 2012-01-20 07:38:15

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lita Iulian & Stamule Tănase, 2018. "Using non-parametric technical data envelopment analysis - DEA, for measuring productive technical efficiency," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 12(1), pages 533-543, May.
    2. Zhang, Yuquan W. & Beach, Robert H. & Cai, Yongxia, 2013. "China’s Agriculture under Urbanization: A Partial Equilibrium Analysis," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150782, Agricultural and Applied Economics Association.
    3. Kaiwen Ji & Qiaoyun Hou & Yi Yu & Dan Pan, 2023. "Rural E-Commerce and Agricultural Carbon Emission Reduction: A Quasi-Natural Experiment from China’s Rural E-Commerce Demonstration County Program Based on 355 Cities in Ten Years," Agriculture, MDPI, vol. 14(1), pages 1-16, December.
    4. Gong, Binlei, 2020. "Agricultural productivity convergence in China," China Economic Review, Elsevier, vol. 60(C).
    5. Chloé Duvivier, 2013. "Does Urban Proximity Enhance Technical Efficiency? Evidence From Chinese Agriculture," Journal of Regional Science, Wiley Blackwell, vol. 53(5), pages 923-943, December.
    6. Xingle Long & Yusen Luo & Huaping Sun & Gang Tian, 2018. "Fertilizer using intensity and environmental efficiency for China’s agriculture sector from 1997 to 2014," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1573-1591, July.
    7. Haonan Zhang & Zheng Chen & Jieyong Wang & Haitao Wang & Yingwen Zhang, 2023. "Spatial-Temporal Pattern of Agricultural Total Factor Productivity Change (Tfpch) in China and Its Implications for Agricultural Sustainable Development," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    8. Ma, Shuzhong & Feng, Han, 2013. "Will the decline of efficiency in China's agriculture come to an end? An analysis based on opening and convergence," China Economic Review, Elsevier, vol. 27(C), pages 179-190.
    9. Lin, Boqiang & Xu, Bin, 2018. "Factors affecting CO2 emissions in China's agriculture sector: A quantile regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 15-27.
    10. Dong, Zefeng & Guan, Zhengfei & Grogan, Kelly A. & Skevas, Theodoros, 2015. "Energy and Environmental Efficiency of Greenhouse Growers in Michigan," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196840, Southern Agricultural Economics Association.
    11. Li, Nan & Jiang, Yuqing & Mu, Hailin & Yu, Zhixin, 2018. "Efficiency evaluation and improvement potential for the Chinese agricultural sector at the provincial level based on data envelopment analysis (DEA)," Energy, Elsevier, vol. 164(C), pages 1145-1160.
    12. Zhou, Xianbo & Li, Kui-Wai & Li, Qin, 2011. "An analysis on technical efficiency in post-reform China," China Economic Review, Elsevier, vol. 22(3), pages 357-372, September.
    13. Nodin, Mohd Norazmi & Mustafa, Zainol & Hussain, Saiful Izzuan, 2023. "Eco-efficiency assessment of Malaysian rice self-sufficiency approach," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    14. Shiwei LIU & Pingyu ZHANG & Xiuli HE & Jing LI, 2015. "Efficiency change in North-East China agricultural sector: A DEA approach," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 61(11), pages 522-532.
    15. Joanna Wolszczak-Derlacz & Aleksandra Parteka, 2011. "Efficiency of European public higher education institutions: a two-stage multicountry approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(3), pages 887-917, December.
    16. Xu, Bin & Lin, Boqiang, 2017. "Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model," Energy Policy, Elsevier, vol. 104(C), pages 404-414.
    17. Tamer Işgın & Remziye Özel & Abdulbaki Bilgiç & Wojciech J. Florkowski & Mehmet Reşit Sevinç, 2020. "DEA Performance Measurements in Cotton Production of Harran Plain, Turkey: A Single and Double Bootstrap Truncated Regression Approaches," Agriculture, MDPI, vol. 10(4), pages 1-17, April.
    18. Zhilu Sun & Xiande Li, 2021. "Technical Efficiency of Chemical Fertilizer Use and Its Influencing Factors in China’s Rice Production," Sustainability, MDPI, vol. 13(3), pages 1-18, January.
    19. Nodin, Mohd Norazmi & Mustafa, Zainol & Hussain, Saiful Izzuan, 2022. "Assessing rice production efficiency for food security policy planning in Malaysia: A non-parametric bootstrap data envelopment analysis approach," Food Policy, Elsevier, vol. 107(C).
    20. Kuhn, Lena & Balezentis, Tomas & Hou, Lingling & Wang, Dan, 2020. "Technical and environmental efficiency of livestock farms in China: A slacks-based DEA approach," China Economic Review, Elsevier, vol. 62(C).
    21. Wei-Kang Wang & Wen-Min Lu & Qian Long Kweh & Yu-Li Liu, 2017. "Decentralized and concentrated investments in China and the performance of Taiwanese listed electronic companies," Applied Economics, Taylor & Francis Journals, vol. 49(25), pages 2443-2455, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monchuk, Daniel C. & Zhuo, Chen, 2008. "Explaining Production Inefficiency in China’s Agriculture using Data Envelope Analysis and Semi-Parametric Bootstrapping," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6456, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Chen, Zhuo & Song, Shunfeng, 2008. "Efficiency and technology gap in China's agriculture: A regional meta-frontier analysis," China Economic Review, Elsevier, vol. 19(2), pages 287-296, June.
    3. Chen, Zhuo & Huffman, Wallace E. & Rozelle, Scott, 2009. "Farm technology and technical efficiency: Evidence from four regions in China," China Economic Review, Elsevier, vol. 20(2), pages 153-161, June.
    4. Boris Bravo-Ureta & Daniel Solís & Víctor Moreira López & José Maripani & Abdourahmane Thiam & Teodoro Rivas, 2007. "Technical efficiency in farming: a meta-regression analysis," Journal of Productivity Analysis, Springer, vol. 27(1), pages 57-72, February.
    5. Chloé Duvivier, 2013. "Does Urban Proximity Enhance Technical Efficiency? Evidence From Chinese Agriculture," Journal of Regional Science, Wiley Blackwell, vol. 53(5), pages 923-943, December.
    6. Ma, Shuzhong & Feng, Han, 2013. "Will the decline of efficiency in China's agriculture come to an end? An analysis based on opening and convergence," China Economic Review, Elsevier, vol. 27(C), pages 179-190.
    7. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Hsu, Shih-Hsun, 2008. "Total factor productivity growth in China's agricultural sector," China Economic Review, Elsevier, vol. 19(4), pages 580-593, December.
    8. Chen, Adam Zhuo & Huffman, Wallace E. & Rozelle, Scott, 2003. "Technical Efficiency of Chinese Grain Production: A Stochastic Production Frontier Approach," 2003 Annual meeting, July 27-30, Montreal, Canada 271497, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Xiaohua Yu & Guoqing Zhao, 2009. "Chinese agricultural development in 30 years: A literature review," Frontiers of Economics in China, Springer;Higher Education Press, vol. 4(4), pages 633-648, December.
    10. Gong, Binlei, 2020. "Agricultural productivity convergence in China," China Economic Review, Elsevier, vol. 60(C).
    11. Rungsuriyawiboon, Supawat & Xiaobing, Wang, 2007. "Recent Evidence On Agricultural Efficiency And Productivity In China: A Metafrontier Approach," IAMO Discussion Papers 90863, Institute of Agricultural Development in Transition Economies (IAMO).
    12. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    13. Embaye, Weldensie T. & Bergtold, Jason S. & Schwab, Benjamin & Zereyesus, Yacob A., 2018. "Modeling Farm Household’s Productivity under Inseparable Production and Consumption decisions," 2018 Annual Meeting, August 5-7, Washington, D.C. 274226, Agricultural and Applied Economics Association.
    14. Wen‐Ge Fu & Sizhong Sun & Zhang‐Yue Zhou, 2011. "Technical efficiency of food processing in China: the case of flour and rice processing," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 3(3), pages 321-334, September.
    15. Rungsuriyawiboon, Supawat & Wang, Xiaobing, 2007. "Recent evidence on agricultural efficiency and productivity in China: a metafrontier approach [Neue Anhaltspunkte für Effizienz und Produktivität in der chinesischen Agrarproduktion: Eine Metafront," IAMO Discussion Papers 104, Leibniz Institute of Agricultural Development in Transition Economies (IAMO).
    16. Carter, Colin A. & Estrin, Andrew J., 2001. "Market Reforms Versus Structural Reforms in Rural China," Journal of Comparative Economics, Elsevier, vol. 29(3), pages 527-541, September.
    17. Zhu, Shu & Xu, Xin & Ren, Xiaojing & Sun, Tianhua & Oxley, Les & Rae, Allan & Ma, Hengyun, 2016. "Modeling technological bias and factor input behavior in China's wheat production sector," Economic Modelling, Elsevier, vol. 53(C), pages 245-253.
    18. Shen, Zhiyang & Wang, Songkai & Boussemart, Jean-Philippe & Hao, Yu, 2022. "Digital transition and green growth in Chinese agriculture," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    19. Sizhong Sun, 2006. "Technical Efficiency and Its Determinants in Gansu, West China," Microeconomics Working Papers 21834, East Asian Bureau of Economic Research.
    20. Seok-Oh Jeong & Byeong Park & Léopold Simar, 2010. "Nonparametric conditional efficiency measures: asymptotic properties," Annals of Operations Research, Springer, vol. 173(1), pages 105-122, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chieco:v:21:y:2010:i:2:p:346-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/chieco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.