IDEAS home Printed from https://ideas.repec.org/a/eee/asieco/v97y2025ics1049007825000144.html
   My bibliography  Save this article

The impact of AI adoption on R&D productivity: Evidence from Chinese pharmaceutical manufacturing industry

Author

Listed:
  • Wu, Yifan
  • Yuan, Yiming
  • Song, Xueyin

Abstract

The decline in R&D productivity is a persistent and widespread phenomenon hindering long-term economic growth. With the boom of artificial intelligence (AI), especially the pervasive application of deep learning, AI is now able to participate in innovation, which is expected to help reverse the decreasing trend of R&D productivity. Focusing on the pharmaceutical manufacturing industry, one of the most active domains in AI-driven innovation, we take Chinese listed firms as an example to investigate the role of AI in drug discovery and the impact of AI adoption on new drug R&D productivity. Our empirical results show that other things being equal, new drug output per billion yuan invested in R&D averagely rises by 0.05–0.06, for each 1-unit increase in our AI-adoption index capturing the firm-level AI usage intensity. One of the mechanisms behind it, which we call “R&D elitism”, positively associates new drug R&D productivity with AI adoption through raising the share of core researchers (by 0.2 % on average in terms of educated staffs or 0.8 % on average in terms of experienced ones under the same condition as mentioned above) in the R&D team. With the power of AI, marginal researchers are getting harder to retain and new drugs are hence getting easier to find.

Suggested Citation

  • Wu, Yifan & Yuan, Yiming & Song, Xueyin, 2025. "The impact of AI adoption on R&D productivity: Evidence from Chinese pharmaceutical manufacturing industry," Journal of Asian Economics, Elsevier, vol. 97(C).
  • Handle: RePEc:eee:asieco:v:97:y:2025:i:c:s1049007825000144
    DOI: 10.1016/j.asieco.2025.101890
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1049007825000144
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.asieco.2025.101890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:asieco:v:97:y:2025:i:c:s1049007825000144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/asieco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.