IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v145y2014icp163-170.html
   My bibliography  Save this article

Irrigation revenue loss in Murray–Darling Basin drought: An econometric assessment

Author

Listed:
  • Connor, Jeffery D.
  • Kandulu, John M.
  • Bark, Rosalind H.

Abstract

This article presents an econometric analysis of irrigation commodity area and revenue responses to varying commodity prices, water availability and climate conditions for the second half of a decade long drought in the Murray–Darling Basin, Australia. We find statistically significant evidence of irrigation area decline with reductions in water allocations and irrigation revenue shrinking with area irrigated. Results also indicate hotter drier weather conditions experienced in the drought effected crops differently: some crop revenues suffered, while higher evapotranspiration and yield potential appeared to support higher revenue outcomes for other crops. Comparison revealed that marginal revenue changes in response to water allocations estimated are much less than those implicit in other economic assessments of water scarcity impacts for the same basin that used different methods. We find that triangulation of results between methods provides confidence in consistent results and reveals possible avenues for future research and methodological development.

Suggested Citation

  • Connor, Jeffery D. & Kandulu, John M. & Bark, Rosalind H., 2014. "Irrigation revenue loss in Murray–Darling Basin drought: An econometric assessment," Agricultural Water Management, Elsevier, vol. 145(C), pages 163-170.
  • Handle: RePEc:eee:agiwat:v:145:y:2014:i:c:p:163-170
    DOI: 10.1016/j.agwat.2014.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414001449
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lorite, I.J. & Mateos, L. & Orgaz, F. & Fereres, E., 2007. "Assessing deficit irrigation strategies at the level of an irrigation district," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 51-60, July.
    2. Tauer, Loren W., 2006. "When to Get In and Out of Dairy Farming: A Real Option Analysis," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 0(Number 2), pages 1-9, October.
    3. Connor, Jeffery D. & Schwabe, Kurt & King, Darran & Knapp, Keith, 2012. "Irrigated agriculture and climate change: The influence of water supply variability and salinity on adaptation," Ecological Economics, Elsevier, vol. 77(C), pages 149-157.
    4. Andrew C. Harvey, 1990. "The Econometric Analysis of Time Series, 2nd Edition," MIT Press Books, The MIT Press, edition 2, volume 1, number 026208189x.
    5. Qureshi, Muhammad Ejaz & Connor, Jeffery D. & Kirby, Mac & Mainuddin, Mohammed, 2007. "Economic assessment of acquiring water for environmental flows in the Murray Basin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 0(Issue 3), pages 1-21.
    6. Wittwer, Glyn & Griffith, Marnie, 2011. "Modelling drought and recovery in the southern Murray-Darling basin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 0(Issue 3), pages 1-18, September.
    7. Arriaza, M. & Gomez-Limon, J. A., 2003. "Comparative performance of selected mathematical programming models," Agricultural Systems, Elsevier, vol. 77(2), pages 155-171, August.
    8. Goodman, D. Jay, 2000. "More Reservoirs Or Transfers? A Computable General Equilibrium Analysis Of Projected Water Shortages In The Arkansas River Basin," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 0(Number 2), pages 1-16, December.
    9. S. Niggol Seo & Robert Mendelsohn, 2008. "Measuring impacts and adaptations to climate change: a structural Ricardian model of African livestock management-super-1," Agricultural Economics, International Association of Agricultural Economists, vol. 38(2), pages 151-165, March.
    10. Jeff Connor & Kurt Schwabe & Darran King & David Kaczan & Mac Kirby, 2009. "Impacts of climate change on lower Murray irrigation ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(3), pages 437-456, July.
    11. Peck, Dannele E. & Adams, Richard M., 2010. "Farm-level impacts of prolonged drought: is a multiyear event more than the sum of its parts?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 0(Issue 1), pages 1-18.
    12. Javier Calatrava & Alberto Garrido, 2005. "Modelling water markets under uncertain water supply," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 32(2), pages 119-142, June.
    13. Quiroga, Sonia & Iglesias, Ana, 2009. "A comparison of the climate risks of cereal, citrus, grapevine and olive production in Spain," Agricultural Systems, Elsevier, vol. 101(1-2), pages 91-100, June.
    14. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
    15. Feng Song & Jinhua Zhao & Scott M. Swinton, 2011. "Switching to Perennial Energy Crops Under Uncertainty and Costly Reversibility," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 764-779.
    16. Iglesias, Eva & Garrido, Alberto & Gomez-Ramos, Almudena, 2003. "Evaluation of drought management in irrigated areas," Agricultural Economics, Blackwell, vol. 29(2), pages 211-229, October.
    17. Lewis, David J. & Plantinga, Andrew J. & Nelson, Erik & Polasky, Stephen, 2011. "The efficiency of voluntary incentive policies for preventing biodiversity loss," Resource and Energy Economics, Elsevier, vol. 33(1), pages 192-211, January.
    18. Schwabe, Kurt A. & Connor, Jeffery D., 2012. "Drought Issues in Semi-arid and Arid Environments," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 0(Issue 3), pages 1-5.
    19. Lewis, David J. & Plantinga, Andrew J. & Nelson, Erik & Polasky, Stephen, 2011. "The efficiency of voluntary incentive policies for preventing biodiversity loss," Resource and Energy Economics, Elsevier, vol. 33(1), pages 192-211, January.
    20. Loch, Adam & Bjornlund, Henning & Wheeler, Sarah & Connor, Jeff, 2012. "Allocation trade in Australia: a qualitative understanding or irrigator motives and behaviour," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 0(Issue 1), pages 1-19, March.
    21. Dannele E. Peck & Richard M. Adams, 2010. "Farm-level impacts of prolonged drought: is a multiyear event more than the sum of its parts?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(1), pages 43-60, January.
    22. Iglesias, Eva & Garrido, Alberto & Gomez-Ramos, Almudena, 2003. "Evaluation of drought management in irrigated areas," Agricultural Economics of Agricultural Economists, International Association of Agricultural Economists, vol. 29(2), October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:agiwat:v:191:y:2017:i:c:p:229-238 is not listed on IDEAS
    2. Reca, Juan & García-Manzano, Alfonso & Martínez, Juan, 2015. "Optimal pumping scheduling model considering reservoir evaporation," Agricultural Water Management, Elsevier, vol. 148(C), pages 250-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:145:y:2014:i:c:p:163-170. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/agwat .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.