IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v169y2006i2p361-379.html
   My bibliography  Save this article

Analysis of Irish third‐level college applications data

Author

Listed:
  • Isobel Claire Gormley
  • Thomas Brendan Murphy

Abstract

Summary. The Irish college admissions system involves prospective students listing up to 10 courses in order of preference on their application. Places in third‐level educational institutions are subsequently offered to the applicants on the basis of both their preferences and their final second‐level examination results. The college applications system is a large area of public debate in Ireland. Detractors suggest that the process creates artificial demand for ‘high profile’ courses, causing applicants to ignore their vocational callings. Supporters argue that the system is impartial and transparent. The Irish college degree applications data from the year 2000 are analysed by using mixture models based on ranked data models to investigate the types of application behaviour that are exhibited by college applicants. The results of this analysis show that applicants form groups according to both the discipline and the geographical location of their course choices. In addition, there is evidence of the suggested ‘points race’ for high profile courses. Finally, gender emerges as an influential factor when studying course choice behaviour.

Suggested Citation

  • Isobel Claire Gormley & Thomas Brendan Murphy, 2006. "Analysis of Irish third‐level college applications data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 361-379, March.
  • Handle: RePEc:bla:jorssa:v:169:y:2006:i:2:p:361-379
    DOI: 10.1111/j.1467-985X.2006.00412.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2006.00412.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2006.00412.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, Enero.
    2. Murphy, Thomas Brendan & Martin, Donal, 2003. "Mixtures of distance-based models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 645-655, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delaney, Liam & Harmon, Colm & Redmond, Cathy, 2011. "Parental education, grade attainment and earnings expectations among university students," Economics of Education Review, Elsevier, vol. 30(6), pages 1136-1152.
    2. Liam Delaney & Colm Harmon & Cathy Redmond, 2010. "Parental Education, Grade Attainment & Earnings Expectations among University Students," Working Papers 201035, Geary Institute, University College Dublin.
    3. Cristina Mollica & Luca Tardella, 2017. "Bayesian Plackett–Luce Mixture Models for Partially Ranked Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 442-458, June.
    4. Biernacki, Christophe & Jacques, Julien, 2013. "A generative model for rank data based on insertion sort algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 162-176.
    5. Keane, Michael & Ketcham, Jonathan & Kuminoff, Nicolai & Neal, Timothy, 2021. "Evaluating consumers’ choices of Medicare Part D plans: A study in behavioral welfare economics," Journal of Econometrics, Elsevier, vol. 222(1), pages 107-140.
    6. Denny, Kevin & Doyle, Orla & McMullin, Patricia & O'Sullivan, Vincent, 2014. "Money, mentoring and making friends: The impact of a multidimensional access program on student performance," Economics of Education Review, Elsevier, vol. 40(C), pages 167-182.
    7. François Caron & Emily B. Fox, 2017. "Sparse graphs using exchangeable random measures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1295-1366, November.
    8. Cristina Mollica & Luca Tardella, 2021. "Bayesian analysis of ranking data with the Extended Plackett–Luce model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 175-194, March.
    9. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    10. Lee, Paul H. & Yu, Philip L.H., 2012. "Mixtures of weighted distance-based models for ranking data with applications in political studies," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2486-2500.
    11. Volodymyr Melnykov, 2013. "Finite mixture modelling in mass spectrometry analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 573-592, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Paul H. & Yu, Philip L.H., 2010. "Distance-based tree models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1672-1682, June.
    2. Dan Yavorsky & Elisabeth Honka & Keith Chen, 2021. "Consumer search in the U.S. auto industry: The role of dealership visits," Quantitative Marketing and Economics (QME), Springer, vol. 19(1), pages 1-52, March.
    3. Zhifeng Gao & Ted C. Schroeder, 2009. "Consumer responses to new food quality information: are some consumers more sensitive than others?," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 339-346, May.
    4. Cheng, Leilei & Yin, Changbin & Chien, Hsiaoping, 2015. "Demand for milk quantity and safety in urban China: evidence from Beijing and Harbin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), April.
    5. Sebastian Heidenreich & Andrea Phillips-Beyer & Bruno Flamion & Melissa Ross & Jaein Seo & Kevin Marsh, 2021. "Benefit–Risk or Risk–Benefit Trade-Offs? Another Look at Attribute Ordering Effects in a Pilot Choice Experiment," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 14(1), pages 65-74, January.
    6. Wen, Chieh-Hua & Huang, Chia-Jung & Fu, Chiang, 2020. "Incorporating continuous representation of preferences for flight departure times into stated itinerary choice modeling," Transport Policy, Elsevier, vol. 98(C), pages 10-20.
    7. Frith, Michael J., 2019. "Modelling taste heterogeneity regarding offence location choices," Journal of choice modelling, Elsevier, vol. 33(C).
    8. Johannes Buggle & Thierry Mayer & Seyhun Orcan Sakalli & Mathias Thoenig, 2023. "The Refugee’s Dilemma: Evidence from Jewish Migration out of Nazi Germany," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(2), pages 1273-1345.
    9. Boneva, Teodora & Golin, Marta & Kaufmann, Katja Maria & Rauh, Christopher, 2022. "Beliefs about Maternal Labor Supply," IZA Discussion Papers 15788, Institute of Labor Economics (IZA).
    10. Petrolia, Daniel & Interis, Matthew & Hwang, Joonghyun, 2015. "Single-Choice, Repeated-Choice, and Best-Worst Elicitation Formats: Do Results Differ and by How Much?," Working Papers 212479, Mississippi State University, Department of Agricultural Economics.
    11. Webb, Edward J.D. & Hess, Stephane, 2021. "Joint modelling of choice and rating data: Theory and examples," Journal of choice modelling, Elsevier, vol. 40(C).
    12. Jurgen Von Hagen & Jizhong Zhou, 2008. "The interaction between capital controls and exchange rate regimes: evidence from developing countries," International Economic Journal, Taylor & Francis Journals, vol. 22(2), pages 163-185.
    13. Christelis, Dimitris & Dobrescu, Loretti I. & Motta, Alberto, 2020. "Early life conditions and financial risk-taking in older age," The Journal of the Economics of Ageing, Elsevier, vol. 17(C).
    14. Laura-Lucia Richter & Melvyn Weeks, 2016. "Flexible Mixed Logit with Posterior Analysis: Exploring Willingness-to-Pay for Grid Resilience," Cambridge Working Papers in Economics 1631, Faculty of Economics, University of Cambridge.
    15. Javid, Roxana J. & Nejat, Ali, 2017. "A comprehensive model of regional electric vehicle adoption and penetration," Transport Policy, Elsevier, vol. 54(C), pages 30-42.
    16. Ortega, David L. & Wang, H. Holly & Wu, Laping & Hong, Soo Jeong, 2015. "Retail channel and consumer demand for food quality in China," China Economic Review, Elsevier, vol. 36(C), pages 359-366.
    17. Robert Turner, 2013. "Using contingent choice surveys to inform national park management," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 3(2), pages 120-138, June.
    18. Andrea Ascani & Riccardo Crescenzi & Simona Iammarino, 2015. "Economic Institutions and the Location Strategies of European Multinationals in their Geographical Neighbourhood," LEQS – LSE 'Europe in Question' Discussion Paper Series 97, European Institute, LSE.
    19. Shenhao Wang & Qingyi Wang & Jinhua Zhao, 2018. "Deep Neural Networks for Choice Analysis: Extracting Complete Economic Information for Interpretation," Papers 1812.04528, arXiv.org, revised Apr 2021.
    20. Tina Birgitte Hansen & Jes Sanddal Lindholt & Axel Diederichsen & Rikke Søgaard, 2019. "Do Non-participants at Screening have a Different Threshold for an Acceptable Benefit–Harm Ratio than Participants? Results of a Discrete Choice Experiment," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 12(5), pages 491-501, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:169:y:2006:i:2:p:361-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.