IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i8p2486-2500.html
   My bibliography  Save this article

Mixtures of weighted distance-based models for ranking data with applications in political studies

Author

Listed:
  • Lee, Paul H.
  • Yu, Philip L.H.

Abstract

Analysis of ranking data is often required in various fields of study, for example politics, market research and psychology. Over the years, many statistical models for ranking data have been developed. Among them, distance-based ranking models postulate that the probability of observing a ranking of items depends on the distance between the observed ranking and a modal ranking. The closer to the modal ranking, the higher the ranking probability is. However, such a model assumes a homogeneous population, and the single dispersion parameter in the model may not be able to describe the data well. To overcome these limitations, we formulate more flexible models by considering the recently developed weighted distance-based models which can allow different weights for different ranks. The assumption of a homogeneous population can be relaxed by an extension to mixtures of weighted distance-based models. The properties of weighted distance-based models are also discussed. We carry out simulations to test the performance of our parameter estimation and model selection procedures. Finally, we apply the proposed methodology to analyze synthetic ranking datasets and a real world ranking dataset about political goals priority.

Suggested Citation

  • Lee, Paul H. & Yu, Philip L.H., 2012. "Mixtures of weighted distance-based models for ranking data with applications in political studies," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2486-2500.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:8:p:2486-2500
    DOI: 10.1016/j.csda.2012.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312000679
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Paul H. & Yu, Philip L.H., 2010. "Distance-based tree models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1672-1682, June.
    2. Agostino Tarsitano, 2009. "Comparing The Effectiveness Of Rank Correlation Statistics," Working Papers 200906, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.
    3. Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard & Langrognet, Florent, 2006. "Model-based cluster and discriminant analysis with the MIXMOD software," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 587-600, November.
    4. Gormley, Isobel Claire & Murphy, Thomas Brendan, 2008. "Exploring Voting Blocs Within the Irish Electorate," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1014-1027.
    5. Shieh, Grace S., 1998. "A weighted Kendall's tau statistic," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 17-24, July.
    6. Isobel Claire Gormley & Thomas Brendan Murphy, 2006. "Analysis of Irish third-level college applications data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 361-379.
    7. Murphy, Thomas Brendan & Martin, Donal, 2003. "Mixtures of distance-based models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 645-655, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biernacki, Christophe & Jacques, Julien, 2013. "A generative model for rank data based on insertion sort algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 162-176.
    2. repec:jss:jstsof:v:071:i12 is not listed on IDEAS
    3. Andrea Bonanomi & Marta Nai Ruscone & Silvia Angela Osmetti, 2017. "Defining subjects distance in hierarchical cluster analysis by copula approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 859-872, March.
    4. repec:eee:csdana:v:121:y:2018:i:c:p:113-136 is not listed on IDEAS
    5. Philip L. H. Yu & Paul H. Lee & S. F. Cheung & Esther Y. Y. Lau & Doris S. Y. Mok & Harry C. Hui, 2016. "Logit tree models for discrete choice data with application to advice-seeking preferences among Chinese Christians," Computational Statistics, Springer, vol. 31(2), pages 799-827, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:8:p:2486-2500. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.