IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v81y2016i3d10.1007_s11336-016-9505-1.html
   My bibliography  Save this article

A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances

Author

Listed:
  • Antonio D’Ambrosio

    (University of Naples Federico II)

  • Willem J. Heiser

    (Leiden University)

Abstract

Preference rankings usually depend on the characteristics of both the individuals judging a set of objects and the objects being judged. This topic has been handled in the literature with log-linear representations of the generalized Bradley-Terry model and, recently, with distance-based tree models for rankings. A limitation of these approaches is that they only work with full rankings or with a pre-specified pattern governing the presence of ties, and/or they are based on quite strict distributional assumptions. To overcome these limitations, we propose a new prediction tree method for ranking data that is totally distribution-free. It combines Kemeny’s axiomatic approach to define a unique distance between rankings with the CART approach to find a stable prediction tree. Furthermore, our method is not limited by any particular design of the pattern of ties. The method is evaluated in an extensive full-factorial Monte Carlo study with a new simulation design.

Suggested Citation

  • Antonio D’Ambrosio & Willem J. Heiser, 2016. "A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 774-794, September.
  • Handle: RePEc:spr:psycho:v:81:y:2016:i:3:d:10.1007_s11336-016-9505-1
    DOI: 10.1007/s11336-016-9505-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-016-9505-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-016-9505-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Paul H. & Yu, Philip L.H., 2010. "Distance-based tree models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1672-1682, June.
    2. Anders Skrondal & Sophia Rabe-Hesketh, 2003. "Multilevel logistic regression for polytomous data and rankings," Psychometrika, Springer;The Psychometric Society, vol. 68(2), pages 267-287, June.
    3. Murphy, Thomas Brendan & Martin, Donal, 2003. "Mixtures of distance-based models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 645-655, January.
    4. Nerini, David & Ghattas, Badih, 2007. "Classifying densities using functional regression trees: Applications in oceanology," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4984-4993, June.
    5. David R. Larsen & Paul L. Speckman, 2004. "Multivariate Regression Trees for Analysis of Abundance Data," Biometrics, The International Biometric Society, vol. 60(2), pages 543-549, June.
    6. Brian Francis & Regina Dittrich & Reinhold Hatzinger & Roger Penn, 2002. "Analysing partial ranks by using smoothed paired comparison methods: an investigation of value orientation in Europe," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(3), pages 319-336, July.
    7. Gormley, Isobel Claire & Murphy, Thomas Brendan, 2008. "Exploring Voting Blocs Within the Irish Electorate," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1014-1027.
    8. Carolin Strobl & Florian Wickelmaier & Achim Zeileis, 2011. "Accounting for Individual Differences in Bradley-Terry Models by Means of Recursive Partitioning," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 135-153, April.
    9. Siciliano, Roberta & Mola, Francesco, 2000. "Multivariate data analysis and modeling through classification and regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 32(3-4), pages 285-301, January.
    10. Elise Dusseldorp & Jacqueline Meulman, 2004. "The regression trunk approach to discover treatment covariate interaction," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 355-374, September.
    11. Frank Busing & Patrick Groenen & Willem Heiser, 2005. "Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 71-98, March.
    12. Amodio, S. & D’Ambrosio, A. & Siciliano, R., 2016. "Accurate algorithms for identifying the median ranking when dealing with weak and partial rankings under the Kemeny axiomatic approach," European Journal of Operational Research, Elsevier, vol. 249(2), pages 667-676.
    13. Willem Heiser, 2004. "Geometric representation of association between categories," Psychometrika, Springer;The Psychometric Society, vol. 69(4), pages 513-545, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Kamwa & Vincent Merlin, 2019. "The Likelihood of the Consistency of Collective Rankings Under Preferences Aggregation with Four Alternatives Using Scoring Rules: A General Formula and the Optimal Decision Rule," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1377-1395, April.
    2. Francesca Pagliara & Filomena Mauriello & Lucia Russo, 2020. "A Regression Tree Approach for Investigating the Impact of High Speed Rail on Tourists’ Choices," Sustainability, MDPI, vol. 12(3), pages 1-15, January.
    3. Antonio D’Ambrosio & Carmela Iorio & Michele Staiano & Roberta Siciliano, 2019. "Median constrained bucket order rank aggregation," Computational Statistics, Springer, vol. 34(2), pages 787-802, June.
    4. Antonella Plaia & Simona Buscemi & Mariangela Sciandra, 2021. "Consensus among preference rankings: a new weighted correlation coefficient for linear and weak orderings," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 1015-1037, December.
    5. Cascón, J.M. & González-Arteaga, T. & de Andrés Calle, R., 2022. "A new preference classification approach: The λ-dissensus cluster algorithm," Omega, Elsevier, vol. 111(C).
    6. Yu-Shan Shih & Kuang-Hsun Liu, 2019. "Regression trees for detecting preference patterns from rank data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 683-702, September.
    7. Eric Kamwa & Vincent Merlin, 2018. "The Likelihood of the Consistency of Collective Rankings under Preferences Aggregation with Four Alternatives using Scoring Rules: A General Formula and the Optimal Decision Rule," Working Papers hal-01757742, HAL.
    8. Adolfo Morrone & Alfonso Piscitelli & Antonio D’Ambrosio, 2019. "How Disadvantages Shape Life Satisfaction: An Alternative Methodological Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 477-502, January.
    9. Antonella Plaia & Simona Buscemi & Johannes Fürnkranz & Eneldo Loza Mencía, 2022. "Comparing Boosting and Bagging for Decision Trees of Rankings," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 78-99, March.
    10. Yoo, Yeawon & Escobedo, Adolfo R. & Skolfield, J. Kyle, 2020. "A new correlation coefficient for comparing and aggregating non-strict and incomplete rankings," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1025-1041.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio D’Ambrosio & Carmela Iorio & Michele Staiano & Roberta Siciliano, 2019. "Median constrained bucket order rank aggregation," Computational Statistics, Springer, vol. 34(2), pages 787-802, June.
    2. Lee, Paul H. & Yu, Philip L.H., 2012. "Mixtures of weighted distance-based models for ranking data with applications in political studies," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2486-2500.
    3. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    4. Cascón, J.M. & González-Arteaga, T. & de Andrés Calle, R., 2022. "A new preference classification approach: The λ-dissensus cluster algorithm," Omega, Elsevier, vol. 111(C).
    5. Amodio, S. & D’Ambrosio, A. & Siciliano, R., 2016. "Accurate algorithms for identifying the median ranking when dealing with weak and partial rankings under the Kemeny axiomatic approach," European Journal of Operational Research, Elsevier, vol. 249(2), pages 667-676.
    6. Yeawon Yoo & Adolfo R. Escobedo, 2021. "A New Binary Programming Formulation and Social Choice Property for Kemeny Rank Aggregation," Decision Analysis, INFORMS, vol. 18(4), pages 296-320, December.
    7. Antonella Plaia & Simona Buscemi & Johannes Fürnkranz & Eneldo Loza Mencía, 2022. "Comparing Boosting and Bagging for Decision Trees of Rankings," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 78-99, March.
    8. Jianbo Li & Minggao Gu & Tao Hu, 2012. "General partially linear varying-coefficient transformation models for ranking data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1475-1488, January.
    9. Antonella Plaia & Mariangela Sciandra, 2019. "Weighted distance-based trees for ranking data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 427-444, June.
    10. Yu-Shan Shih & Kuang-Hsun Liu, 2019. "Regression trees for detecting preference patterns from rank data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 683-702, September.
    11. Piccarreta, Raffaella, 2010. "Binary trees for dissimilarity data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1516-1524, June.
    12. Biernacki, Christophe & Jacques, Julien, 2013. "A generative model for rank data based on insertion sort algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 162-176.
    13. Martin Kroh, 2008. "The Preadult Origins of Post-Materialism: A Longitudinal Sibling Study," Discussion Papers of DIW Berlin 797, DIW Berlin, German Institute for Economic Research.
    14. Schmid, Lena & Gerharz, Alexander & Groll, Andreas & Pauly, Markus, 2023. "Tree-based ensembles for multi-output regression: Comparing multivariate approaches with separate univariate ones," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    15. Martin Kroh, 2008. "The Preadult Origins of Post-Materialism: A Longitudinal Sibling Study," SOEPpapers on Multidisciplinary Panel Data Research 101, DIW Berlin, The German Socio-Economic Panel (SOEP).
    16. Alessio Buonomo & Cinzia Conti & Francesca Di Patrizio & Salvatore Strozza & Marco Dionisio Terribili, 2024. "Distance learning during the pandemic: opinions and attitudes of young students," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 78(2), pages 211-220, April-Jun.
    17. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2004. "GLLAMM Manual," U.C. Berkeley Division of Biostatistics Working Paper Series 1160, Berkeley Electronic Press.
    18. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    19. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    20. Noelia Rico & Camino R. Vela & Raúl Pérez-Fernández & Irene Díaz, 2021. "Reducing the Computational Time for the Kemeny Method by Exploiting Condorcet Properties," Mathematics, MDPI, vol. 9(12), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:81:y:2016:i:3:d:10.1007_s11336-016-9505-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.