IDEAS home Printed from
   My bibliography  Save this article

Binary trees for dissimilarity data


  • Piccarreta, Raffaella


Binary segmentation procedures (in particular, classification and regression trees) are extended to study the relation between dissimilarity data and a set of explanatory variables. The proposed split criterion is very flexible, and can be applied to a wide range of data (e.g., mixed types of multiple responses, longitudinal data, sequence data). Also, it can be shown to be an extension of well-established criteria introduced in the literature on binary trees.

Suggested Citation

  • Piccarreta, Raffaella, 2010. "Binary trees for dissimilarity data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1516-1524, June.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:6:p:1516-1524

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Briand, Bénédicte & Ducharme, Gilles R. & Parache, Vanessa & Mercat-Rommens, Catherine, 2009. "A similarity measure to assess the stability of classification trees," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1208-1217, February.
    2. Cees H. Elzinga, 2005. "Combinatorial Representations of Token Sequences," Journal of Classification, Springer;The Classification Society, vol. 22(1), pages 87-118, June.
    3. Duncan McVicar & Michael Anyadike-Danes, 2002. "Predicting successful and unsuccessful transitions from school to work by using sequence methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 165(2), pages 317-334.
    4. Dine, Abdessamad & Larocque, Denis & Bellavance, François, 2009. "Multivariate trees for mixed outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3795-3804, September.
    5. Raffaella Piccarreta & Francesco C. Billari, 2007. "Clustering work and family trajectories by using a divisive algorithm," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 1061-1078.
    6. Henk Kiers & Donatella Vicari & Maurizio Vichi, 2005. "Simultaneous classification and multidimensional scaling with external information," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 433-460, September.
    7. Kim, Ji-Hyun, 2009. "Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3735-3745, September.
    8. Siciliano, Roberta & Mola, Francesco, 2000. "Multivariate data analysis and modeling through classification and regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 32(3-4), pages 285-301, January.
    9. Pierpaolo D’Urso, 2000. "Dissimilarity measures for time trajectories," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 9(1), pages 53-83, January.
    10. Sexton, Joseph & Laake, Petter, 2009. "Standard errors for bagged and random forest estimators," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 801-811, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Marco Bonetti & Raffaella Piccarreta & Gaia Salford, 2013. "Parametric and Nonparametric Analysis of Life Courses: An Application to Family Formation Patterns," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 881-902, June.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:6:p:1516-1524. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.