IDEAS home Printed from https://ideas.repec.org/a/bla/canjag/v73y2025i1p75-103.html
   My bibliography  Save this article

Factors shaping innovative behavior: A meta‐analysis of technology adoption studies in agriculture

Author

Listed:
  • Chatzimichael Konstantinos
  • Daskalaki Charoula
  • Emvalomatis Grigorios
  • Tsagris Michail
  • Tzouvelekas Vangelis

Abstract

This study conducts a meta‐regression analysis to synthesize the marginal effects of 12 factors that frequently appear in empirical studies examining farmer's technology adoption behavior. The analysis includes 187 observational studies on technology adoption in agriculture, which are published in 32 peer‐reviewed journals in the broader field of agricultural economics, covering farmer's adoption in 47 countries for a diverse range of agricultural technologies. Using this broad meta‐dataset, we investigate whether each of the 12 determinants has a true effect on technology adoption rates and examine whether Type I and Type II publication bias are present in the adoption literature. Our results reveal that while most determinant factors significantly affect adoption rates, their marginal effects are generally of small magnitude and vary considerably by technology type and country group. Additionally, our results provide evidence of the presence of Type I publication bias in half of the factors considered and Type II publication bias in nearly all, underscoring the need for caution when interpreting results in the adoption literature by researchers and policymakers. Overall, the findings highlight the critical need for proactive measures to address publication bias and promote more transparent and credible research practices in agricultural economics. Cette étude réalise une analyse de méta‐régression pour synthétiser les effets marginaux de 12 facteurs qui apparaissent fréquemment dans des études empiriques examinant le comportement d'adoption de technologies par les agriculteurs. L'analyse inclut 187 études d'observation sur l'adoption de technologies en agriculture, publiées dans 32 revues à comité de lecture dans le domaine plus large de l'économie agricole, couvrant l'adoption par les agriculteurs dans 47 pays pour une vaste gamme de technologies agricoles. À l'aide de ce large méta‐ensemble de données, nous examinons si chacun des 12 déterminants a un effet réel sur les taux d'adoption de technologies et nous analysons si des biais de publication de type I et de type II sont présents dans la littérature sur l'adoption. Nos résultats révèlent que, bien que la plupart des facteurs déterminants affectent de manière significative les taux d'adoption, leurs effets marginaux sont généralement de faible ampleur et varient considérablement en fonction du type de technologie et du groupe de pays. De plus, nos résultats fournissent des preuves de la présence d'un biais de publication de type I dans la moitié des facteurs considérés et d'un biais de publication de type II dans presque tous, soulignant la nécessité de faire preuve de prudence lors de l'interprétation des résultats dans la littérature sur l'adoption par les chercheurs et les décideurs. Globalement, les conclusions mettent en évidence le besoin critique de mesures proactives pour aborder le biais de publication et promouvoir des pratiques de recherche plus transparentes et crédibles en économie agricole.

Suggested Citation

  • Chatzimichael Konstantinos & Daskalaki Charoula & Emvalomatis Grigorios & Tsagris Michail & Tzouvelekas Vangelis, 2025. "Factors shaping innovative behavior: A meta‐analysis of technology adoption studies in agriculture," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 73(1), pages 75-103, March.
  • Handle: RePEc:bla:canjag:v:73:y:2025:i:1:p:75-103
    DOI: 10.1111/cjag.12377
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/cjag.12377
    Download Restriction: no

    File URL: https://libkey.io/10.1111/cjag.12377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Di Falco, Salvatore & Feri, Francesco & Pin, Paolo & Vollenweider, Xavier, 2018. "Ties that bind: Network redistributive pressure and economic decisions in village economies," Journal of Development Economics, Elsevier, vol. 131(C), pages 123-131.
    2. T. D. Stanley & Stephen B. Jarrell, 2005. "Meta‐Regression Analysis: A Quantitative Method of Literature Surveys," Journal of Economic Surveys, Wiley Blackwell, vol. 19(3), pages 299-308, July.
    3. T.D. Stanley & Hristos Doucouliagos & Margaret Giles & Jost Heckemeyer & Robert Johnston & Patrice Laroche & Jon Nelson & Martin Paldam & Jacques Poot & Geoff Pugh & Randall Rosenberger & Katja Rost, 2013. "Meta-analysis of economics research reporting guidelines," Post-Print hal-02137661, HAL.
    4. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    5. Erwin Wauters & Erik Mathijs, 2014. "The adoption of farm level soil conservation practices in developed countries: a meta-analytic review," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 10(1), pages 78-102.
    6. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    7. Andrew D. Foster & Mark R. Rosenzweig, 2010. "Microeconomics of Technology Adoption," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 395-424, September.
    8. Kazushi Takahashi & Rie Muraoka & Keijiro Otsuka, 2020. "Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 31-45, January.
    9. Nicholas J Pates & Nathan P Hendricks, 2020. "Additionality from Payments for Environmental Services with Technology Diffusion," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 281-299, January.
    10. Jonathan Skinner & Douglas Staiger, 2007. "Technology Adoption from Hybrid Corn to Beta-Blockers," NBER Chapters, in: Hard-to-Measure Goods and Services: Essays in Honor of Zvi Griliches, pages 545-570, National Bureau of Economic Research, Inc.
    11. Kolawole Ogundari & Olufemi D. Bolarinwa, 2018. "Impact of agricultural innovation adoption: a meta†analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(2), pages 217-236, April.
    12. Staal, S. J. & Baltenweck, I. & Waithaka, M. M. & deWolff, T. & Njoroge, L., 2002. "Location and uptake: integrated household and GIS analysis of technology adoption and land use, with application to smallholder dairy farms in Kenya," Agricultural Economics, Blackwell, vol. 27(3), pages 295-315, November.
    13. Dario Schulz & Jan Börner, 2023. "Innovation context and technology traits explain heterogeneity across studies of agricultural technology adoption: A meta‐analysis," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(2), pages 570-590, June.
    14. Rita Almeida & Ana Margarida Fernandes, 2008. "Openness and Technological Innovations in Developing Countries: Evidence from Firm-Level Surveys," Journal of Development Studies, Taylor & Francis Journals, vol. 44(5), pages 701-727.
    15. Edward Oczkowski & Hristos Doucouliagos, 2015. "Wine Prices and Quality Ratings: A Meta-regression Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 103-121.
    16. T. D. Stanley, 2008. "Meta‐Regression Methods for Detecting and Estimating Empirical Effects in the Presence of Publication Selection," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(1), pages 103-127, February.
    17. Tomas Havranek & Zuzana Irsova & Olesia Zeynalova, 2018. "Tuition Fees and University Enrolment: A Meta‐Regression Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(6), pages 1145-1184, December.
    18. Buddhini Ranjika Walisinghe & Shyama Ratnasiri & Nicholas Rohde & Ross Guest, 2017. "Does agricultural extension promote technology adoption in Sri Lanka," International Journal of Social Economics, Emerald Group Publishing Limited, vol. 44(12), pages 2173-2186, December.
    19. Tomáš Havránek & T. D. Stanley & Hristos Doucouliagos & Pedro Bom & Jerome Geyer‐Klingeberg & Ichiro Iwasaki & W. Robert Reed & Katja Rost & R. C. M. van Aert, 2020. "Reporting Guidelines For Meta‐Analysis In Economics," Journal of Economic Surveys, Wiley Blackwell, vol. 34(3), pages 469-475, July.
    20. James G. MacKinnon & Matthew D. Webb, 2017. "Wild Bootstrap Inference for Wildly Different Cluster Sizes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
    21. Evenson, Robert E. & Westphal, Larry E., 1995. "Technological change and technology strategy," Handbook of Development Economics, in: Hollis Chenery & T.N. Srinivasan (ed.), Handbook of Development Economics, edition 1, volume 3, chapter 37, pages 2209-2299, Elsevier.
    22. T. D. Stanley, 2005. "Beyond Publication Bias," Journal of Economic Surveys, Wiley Blackwell, vol. 19(3), pages 309-345, July.
    23. T.D. Stanley & Hristos Doucouliagos & Margaret Giles & Jost H. Heckemeyer & Robert J. Johnston & Patrice Laroche & Jon P. Nelson & Martin Paldam & Jacques Poot & Geoff Pugh & Randall S. Rosenberger & , 2013. "Meta-Analysis Of Economics Research Reporting Guidelines," Journal of Economic Surveys, Wiley Blackwell, vol. 27(2), pages 390-394, April.
    24. Balima, Hippolyte W. & Kilama, Eric G. & Tapsoba, René, 2020. "Inflation targeting: Genuine effects or publication selection bias?," European Economic Review, Elsevier, vol. 128(C).
    25. Wallace E. Huffman, 1977. "Allocative Efficiency: The Role of Human Capital," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 91(1), pages 59-79.
    26. Dasgupta, Susmita & Meisner, Craig & Wheeler, David & Jin, Yanhong, 2002. "Agricultural Trade, Development and Toxic Risk," World Development, Elsevier, vol. 30(8), pages 1401-1412, August.
    27. Leslie Lipper & Philip Thornton & Bruce M. Campbell & Tobias Baedeker & Ademola Braimoh & Martin Bwalya & Patrick Caron & Andrea Cattaneo & Dennis Garrity & Kevin Henry & Ryan Hottle & Louise Jackson , 2014. "Climate-smart agriculture for food security," Nature Climate Change, Nature, vol. 4(12), pages 1068-1072, December.
    28. Ogundari, Kolawole & Bolarinwa, Olufemi D., 2018. "Impact of agricultural innovation adoption: a meta-analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(2), April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernau, Erik & Hirsch, Stefan, 2019. "What drives dividend smoothing? A meta regression analysis of the Lintner model," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 255-273.
    2. Klomp, Jeroen, 2023. "Political budget cycles in military expenditures: A meta-analysis," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 1083-1102.
    3. Mattia Filomena & Matteo Picchio, 2023. "Retirement and health outcomes in a meta‐analytical framework," Journal of Economic Surveys, Wiley Blackwell, vol. 37(4), pages 1120-1155, September.
    4. Iryna Printezis & Carola Grebitus & Stefan Hirsch, 2019. "The price is right!? A meta-regression analysis on willingness to pay for local food," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-23, May.
    5. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    6. Zhuanlan Sun & Demi Zhu, 2023. "Investigating environmental regulation effects on technological innovation: A meta-regression analysis," Energy & Environment, , vol. 34(3), pages 463-492, May.
    7. Stanley, T. D. & Doucouliagos, Chris, 2019. "Practical Significance, Meta-Analysis and the Credibility of Economics," IZA Discussion Papers 12458, Institute of Labor Economics (IZA).
    8. Germà Bel & Mildred E. Warner, 2016. "Factors explaining inter-municipal cooperation in service delivery: a meta-regression analysis," Journal of Economic Policy Reform, Taylor and Francis Journals, vol. 19(2), pages 91-115, April.
    9. Demena, B.A., 2021. "Effectiveness of export promotion programmes," ISS Working Papers - General Series 688, International Institute of Social Studies of Erasmus University Rotterdam (ISS), The Hague.
    10. Geyer-Klingeberg, Jerome & Hang, Markus & Rathgeber, Andreas, 2020. "Meta-analysis in finance research: Opportunities, challenges, and contemporary applications," International Review of Financial Analysis, Elsevier, vol. 71(C).
    11. Ugur, Mehmet & Trushin, Eshref & Solomon, Edna & Guidi, Francesco, 2016. "R&D and productivity in OECD firms and industries: A hierarchical meta-regression analysis," Research Policy, Elsevier, vol. 45(10), pages 2069-2086.
    12. Matteo Picchio & Michele Ubaldi, 2024. "Unemployment and health: A meta‐analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 38(4), pages 1437-1472, September.
    13. Petra Valickova & Tomas Havranek & Roman Horvath, 2015. "Financial Development And Economic Growth: A Meta-Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 506-526, July.
    14. Stefan Hirsch, 2018. "Successful In The Long Run: A Meta†Regression Analysis Of Persistent Firm Profits," Journal of Economic Surveys, Wiley Blackwell, vol. 32(1), pages 23-49, February.
    15. Anton Astakhov & Tomas Havranek & Jiri Novak, 2019. "Firm Size And Stock Returns: A Quantitative Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 33(5), pages 1463-1492, December.
    16. Petr Polák, 2019. "The Euro'S Trade Effect: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 33(1), pages 101-124, February.
    17. Nicolas Fleury & Fabrice Gilles, 2018. "The intergenerational transmission of education. A meta-regression analysis," Education Economics, Taylor & Francis Journals, vol. 26(6), pages 557-573, November.
    18. Dominika Ehrenbergerova & Josef Bajzik & Tomas Havranek, 2023. "When Does Monetary Policy Sway House Prices? A Meta-Analysis," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(2), pages 538-573, June.
    19. Sebri, Maamar & Dachraoui, Hajer, 2021. "Natural resources and income inequality: A meta-analytic review," Resources Policy, Elsevier, vol. 74(C).
    20. Stanley, T. D. & Doucouliagos, Chris & Steel, Piers, 2015. "Does ICT generate economic growth? A meta-regression analysis," Working Papers eco_2015_9, Deakin University, Department of Economics.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:canjag:v:73:y:2025:i:1:p:75-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/caefmea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.