IDEAS home Printed from https://ideas.repec.org/a/ags/aareaj/253473.html
   My bibliography  Save this article

Measuring Technical Efficiency of Dairy Farms with Imprecise Data: A Fuzzy Data Envelopment Analysis Approach

Author

Listed:
  • Mugera, Amin W.

Abstract

This article integrates fuzzy set theory in Data Envelopment Analysis (DEA) framework to compute technical efficiency scores when input and output data are imprecise. The underlying assumption in convectional DEA is that inputs and outputs data are measured with precision. However, production agriculture takes place in an uncertain environment and, in some situations, input and output data may be imprecise. We present an approach of measuring efficiency when data is known to lie within specified intervals and empirically illustrate this approach using a group of 34 dairy producers in Pennsylvania. Compared to the convectional DEA scores that are point estimates, the computed fuzzy efficiency scores allow the decision maker to trace the performance of a decision-making unit at different possibility levels.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borro
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Mugera, Amin W., 2013. "Measuring Technical Efficiency of Dairy Farms with Imprecise Data: A Fuzzy Data Envelopment Analysis Approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(4), December.
  • Handle: RePEc:ags:aareaj:253473
    as

    Download full text from publisher

    File URL: http://purl.umn.edu/253473
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    3. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    4. Yann Duval & Allen M. Featherstone, 2002. "Interactivity and Soft Computing in Portfolio Management: Should Farmers Own Food and Agribusiness Stocks?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(1), pages 120-133.
    5. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    6. Emina Krcmar & G. Cornelis van Kooten, 2008. "Economic Development Prospects of Forest-Dependent Communities: Analyzing Trade-offs Using a Compromise-Fuzzy Programming Framework," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(4), pages 1103-1117.
    7. G. Cornelis van Kooten & Emina Krcmar & Erwin H. Bulte, 2001. "Preference Uncertainty in Non-Market Valuation: A Fuzzy Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 487-500.
    8. Wilson, Paul W, 1993. "Detecting Outliers in Deterministic Nonparametric Frontier Models with Multiple Outputs," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 319-323, July.
    9. Léopold Simar, 2007. "How to improve the performances of DEA/FDH estimators in the presence of noise?," Journal of Productivity Analysis, Springer, vol. 28(3), pages 183-201, December.
    10. Kuosmanen, Timo & Post, Thierry & Scholtes, Stefan, 2007. "Non-parametric tests of productive efficiency with errors-in-variables," Journal of Econometrics, Elsevier, vol. 136(1), pages 131-162, January.
    11. W. Cooper & L. Seiford & K. Tone & J. Zhu, 2007. "Some models and measures for evaluating performances with DEA: past accomplishments and future prospects," Journal of Productivity Analysis, Springer, vol. 28(3), pages 151-163, December.
    12. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    13. William Cooper & Zhimin Huang & Vedran Lelas & Susan Li & Ole Olesen, 1998. "Chance Constrained Programming Formulations for Stochastic Characterizations of Efficiency and Dominance in DEA," Journal of Productivity Analysis, Springer, vol. 9(1), pages 53-79, January.
    14. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    15. A. Hadi‐Vencheh & R. Kazemi Matin, 2011. "An application of IDEA to wheat farming efficiency," Agricultural Economics, International Association of Agricultural Economists, vol. 42(4), pages 487-493, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:agfoec:v:5:y:2017:i:1:d:10.1186_s40100-017-0085-x is not listed on IDEAS

    More about this item

    Keywords

    Agribusiness; Agricultural and Food Policy; Livestock Production/Industries;

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aareaj:253473. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/aaresea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.