IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5457-d272840.html
   My bibliography  Save this article

Innovation Model of Agricultural Technologies Based on Intuitionistic Fuzzy Sets

Author

Listed:
  • Zoran Ciric P

    (Faculty of Economics Subotica, University of Novi Sad, 21000 Novi Sad, Serbia)

  • Dragan Stojic

    (Faculty of Economics Subotica, University of Novi Sad, 21000 Novi Sad, Serbia)

  • Otilija Sedlak

    (Faculty of Economics Subotica, University of Novi Sad, 21000 Novi Sad, Serbia)

  • Aleksandra Marcikic Horvat

    (Faculty of Economics Subotica, University of Novi Sad, 21000 Novi Sad, Serbia)

  • Zana Kleut

    (Faculty of Economics Subotica, University of Novi Sad, 21000 Novi Sad, Serbia)

Abstract

The selection and rational use of mechanization significantly affects the cost of agricultural products. To achieve the best financial effects, it is necessary to optimize the use of existing machine parks. The authors suggest a decision tree for deciding whether to ‘innovate or not’. The aim of the research is to define an algorithm that determines whether or not the land is arable, and in this way to help the owner of the family farm in the planning of working hours for agricultural machines, i.e., managing the machine park. The lack of plans, which stems from the lack of accurate data on the appropriate conditions of cultivation, leads to inappropriate use of time and the capacity of the machine park. The decision process is split into four compound variables: biological conditions, economic environment, technological conditions, and expertise and workmanship quality. Linguistic values of these variables are modeled with intuitionistic fuzzy sets, allowing for imprecision in data as well as experts’ hesitation.

Suggested Citation

  • Zoran Ciric P & Dragan Stojic & Otilija Sedlak & Aleksandra Marcikic Horvat & Zana Kleut, 2019. "Innovation Model of Agricultural Technologies Based on Intuitionistic Fuzzy Sets," Sustainability, MDPI, vol. 11(19), pages 1-12, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5457-:d:272840
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5457/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mugera, Amin W., 2013. "Measuring Technical Efficiency of Dairy Farms with Imprecise Data: A Fuzzy Data Envelopment Analysis Approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(4), pages 1-19.
    2. Wang, Xiaobing & Yamauchi, Futoshi & Otsuka, Keijiro & Huang, Jikun, 2016. "Wage Growth, Landholding, and Mechanization in Chinese Agriculture," World Development, Elsevier, vol. 86(C), pages 30-45.
    3. Lerman, Zvi & Csaki, Csaba & Feder, Gershon, 2004. "Evolving Farm Structures and Land Use Patterns in Former Socialist Countries," Discussion Papers 289993, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    4. Zakić, Nebojša & Vukotić, Svetlana & Cvijanović, Drago, 2014. "Organisational Models In Agriculture With Special Reference To Small Farmers," Economics of Agriculture, Institute of Agricultural Economics, vol. 61(1), pages 1-13, March.
    5. Knowler, Duncan & Bradshaw, Ben, 2007. "Farmers' adoption of conservation agriculture: A review and synthesis of recent research," Food Policy, Elsevier, vol. 32(1), pages 25-48, February.
    6. Zhen Peng & Lifeng Wu & Zhenguo Chen, 2016. "Research on Steady States of Fuzzy Cognitive Map and its Application in Three-Rivers Ecosystem," Sustainability, MDPI, vol. 8(1), pages 1-10, January.
    7. Tiffany L. Fess & Vagner A. Benedito, 2018. "Organic versus Conventional Cropping Sustainability: A Comparative System Analysis," Sustainability, MDPI, vol. 10(1), pages 1-42, January.
    8. Houssou, Nazaire & Chapoto, Anthony, 2015. "Adoption of Farm Mechanization, Cropland Expansion, and Intensification in Ghana," 2015 Conference, August 9-14, 2015, Milan, Italy 211744, International Association of Agricultural Economists.
    9. Van Passel, Steven & Nevens, Frank & Mathijs, Erik & Van Huylenbroeck, Guido, 2007. "Measuring farm sustainability and explaining differences in sustainable efficiency," Ecological Economics, Elsevier, vol. 62(1), pages 149-161, April.
    10. Erdal, Gülistan & Esengün, Kemal & Erdal, Hilmi & Gündüz, Orhan, 2007. "Energy use and economical analysis of sugar beet production in Tokat province of Turkey," Energy, Elsevier, vol. 32(1), pages 35-41.
    11. Ugur, Mehmet & Mitra, Arup, 2017. "Technology Adoption and Employment in Less Developed Countries: A Mixed-Method Systematic Review," World Development, Elsevier, vol. 96(C), pages 1-18.
    12. Johnson, Knowlton & Hays, Carol & Center, Hayden & Daley, Charlotte, 2004. "Building capacity and sustainable prevention innovations: a sustainability planning model," Evaluation and Program Planning, Elsevier, vol. 27(2), pages 135-149, May.
    13. Tianyi Zhang & Jinxia Wang & Yishu Teng, 2017. "Adaptive Effectiveness of Irrigated Area Expansion in Mitigating the Impacts of Climate Change on Crop Yields in Northern China," Sustainability, MDPI, vol. 9(5), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ernesto Leon-Castro & Fabio Blanco-Mesa & Victor Alfaro-Garcia & Anna M. Gil-Lafuente & Jose M. Merigo, 2021. "Fuzzy systems in innovation and sustainability," Computational and Mathematical Organization Theory, Springer, vol. 27(4), pages 377-383, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gómez-Limón, José A. & Sanchez-Fernandez, Gabriela, 2010. "Empirical evaluation of agricultural sustainability using composite indicators," Ecological Economics, Elsevier, vol. 69(5), pages 1062-1075, March.
    2. Liu, Yan & Heerink, Nico & Li, Fan & Shi, Xiaoping, 2022. "Do agricultural machinery services promote village farmland rental markets? Theory and evidence from a case study in the North China plain," Land Use Policy, Elsevier, vol. 122(C).
    3. Chantal Gascuel & Michèle Tixier-Boichard & Benoit Dedieu & Cécile Détang-Dessendre & Pierre Dupraz & Philippe Faverdin & Laurent Hazard & Philippe Hinsinger & Isabelle Litrico-Chiarelli & Françoise M, 2019. "Réflexion prospective interdisciplinaire pour l’agroécologie. Rapport de synthèse," Post-Print hal-02154433, HAL.
    4. Olson, Kent & Gauto, Victor & Erenstein, Olaf & Teufel, Nils & Swain, Braja & Tui, Sabine Homann-Kee & Duncan, Alan, 2021. "Estimating Farmers’ Internal Value of Crop Residues in Smallholder Crop-Livestock Systems: A South Asia Case Study," 2021 Conference, August 17-31, 2021, Virtual 315188, International Association of Agricultural Economists.
    5. Nick Middleton & Utchang Kang, 2017. "Sand and Dust Storms: Impact Mitigation," Sustainability, MDPI, vol. 9(6), pages 1-22, June.
    6. Ridier, Aude & Roussy, Caroline & Chaib, Karim, 2021. "Adoption of crop diversification by specialized grain farmers in south-western France: evidence from a choice-modelling experiment," Review of Agricultural, Food and Environmental Studies, Institut National de la Recherche Agronomique (INRA), vol. 102(1), April.
    7. Figge, Frank & Hahn, Tobias & Barkemeyer, Ralf, 2014. "The If, How and Where of assessing sustainable resource use," Ecological Economics, Elsevier, vol. 105(C), pages 274-283.
    8. Genesis T. Yengoh & Frederick Ato Armah & Edward Ebo Onumah, 2010. "Paths to Attaining Food Security: The Case of Cameroon," Challenges, MDPI, vol. 1(1), pages 1-22, August.
    9. Nelson Mango & Clifton Makate & Lulseged Tamene & Powell Mponela & Gift Ndengu, 2018. "Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa," Land, MDPI, vol. 7(2), pages 1-19, April.
    10. Mudaca, Joao Daniel & Tsuchiya, Toshiyuki & Yamada, Masaaki & Onwona-Agyeman, Siaw, 2015. "Household participation in Payments for Ecosystem Services: A case study from Mozambique," Forest Policy and Economics, Elsevier, vol. 55(C), pages 21-27.
    11. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    12. Caroline Roussy & Aude Ridier & Karim Chaïb, 2014. "Adoption d’innovations par les agriculteurs : rôle des perceptions et des préférences," Post-Print hal-01123427, HAL.
    13. Wollni, Meike & Andersson, Camilla, 2014. "Spatial patterns of organic agriculture adoption: Evidence from Honduras," Ecological Economics, Elsevier, vol. 97(C), pages 120-128.
    14. Ignaciuk, Ada & Malevolti, Giulia & Scognamillo, Antonio & Sitko, Nicholas J., 2022. "Can food aid relax farmers’ constraints to adopting climate-adaptive agricultural practices? Evidence from Ethiopia, Malawi and the United Republic of Tanzania," ESA Working Papers 324073, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    15. Conor Carney & Monica Harber Carney, 2018. "Impact of soil conservation adoption on intra‐household allocations in Zambia," Review of Development Economics, Wiley Blackwell, vol. 22(4), pages 1390-1408, November.
    16. Beatrice Dingha & Leah Sandler & Arnab Bhowmik & Clement Akotsen-Mensah & Louis Jackai & Kevin Gibson & Ronald Turco, 2019. "Industrial Hemp Knowledge and Interest among North Carolina Organic Farmers in the United States," Sustainability, MDPI, vol. 11(9), pages 1-17, May.
    17. Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
    18. Ryschawy, Julie & Tiffany, Sara & Gaudin, Amélie & Niles, Meredith T. & Garrett, Rachael D., 2021. "Moving niche agroecological initiatives to the mainstream: A case-study of sheep-vineyard integration in California," Land Use Policy, Elsevier, vol. 109(C).
    19. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    20. Alfonso, Moya L. & Nickelson, Jen & Hogeboom, David L. & French, Jennifer & Bryant, Carol A. & McDermott, Robert J. & Baldwin, Julie A., 2008. "Assessing local capacity for health intervention," Evaluation and Program Planning, Elsevier, vol. 31(2), pages 145-159, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5457-:d:272840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.