Advanced Search
MyIDEAS: Login to save this article or follow this journal

Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models

Contents:

Author Info

  • Bekiros, Stelios D.
  • Paccagnini, Alessia

Abstract

Advanced Bayesian methods are employed in estimating dynamic stochastic general equilibrium (DSGE) models. Although policymakers and practitioners are particularly interested in DSGE models, these are typically too stylized to be taken directly to the data and often yield weak prediction results. Hybrid models can deal with some of the DSGE model misspecifications. Major advances in Bayesian estimation methodology could allow these models to outperform well-known time series models and effectively deal with more complex real-world problems as richer sources of data become available. A comparative evaluation of the out-of-sample predictive performance of many different specifications of estimated DSGE models and various classes of VAR models is performed, using datasets from the US economy. Simple and hybrid DSGE models are implemented, such as DSGE–VAR and Factor Augmented DSGEs and tested against standard, Bayesian and Factor Augmented VARs. Moreover, small scale models including the real gross domestic product, the harmonized consumer price index and the nominal short-term federal funds interest rate, are comparatively assessed against medium scale models featuring additionally sticky nominal prices, wage contracts, habit formation, variable capital utilization and investment adjustment costs. The investigated period spans 1960:Q4–2010:Q4 and forecasts are produced for the out-of-sample testing period 1997:Q1–2010:Q4. This comparative validation can be useful to monetary policy analysis and macro-forecasting with the use of advanced Bayesian methods.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0167947313003423
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 71 (2014)
Issue (Month): C ()
Pages: 298-323

as in new window
Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:298-323

Contact details of provider:
Web page: http://www.elsevier.com/locate/csda

Related research

Keywords: Bayesian estimation; Forecasting; Metropolis–Hastings; Markov Chain Monte Carlo; Marginal data density; Factor augmented DSGE;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
  2. Adolfson, Malin & Laséen, Stefan & Lindé, Jesper & Villani, Mattias, 2007. "Evaluating An Estimated New Keynesian Small Open Economy Model," Working Paper Series 203, Sveriges Riksbank (Central Bank of Sweden).
  3. Jean Boivin & Marc Giannoni, 2006. "DSGE Models in a Data-Rich Environment," NBER Technical Working Papers 0332, National Bureau of Economic Research, Inc.
  4. Spencer, David E., 1993. "Developing a Bayesian vector autoregression forecasting model," International Journal of Forecasting, Elsevier, vol. 9(3), pages 407-421, November.
  5. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-87, April.
  6. Edward Herbst & Frank Schorfheide, 2012. "Evaluating DSGE model forecasts of comovements," Finance and Economics Discussion Series 2012-11, Board of Governors of the Federal Reserve System (U.S.).
  7. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach," Finance and Economics Discussion Series 2004-03, Board of Governors of the Federal Reserve System (U.S.).
  8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  9. Ralf Brueggemann & Helmut Luetkepohl & Massimiliano Marcellino, 2006. "Forecasting Euro-Area Variables with German Pre-EMU Data," Economics Working Papers ECO2006/30, European University Institute.
  10. Frank Smets & Raf Wouters, 2007. "Shocks and Frictions in US Business Cycles : a Bayesian DSGE Approach," Working Paper Research 109, National Bank of Belgium.
  11. Christopher A. Sims & Tao Zha, 1996. "Bayesian methods for dynamic multivariate models," Working Paper 96-13, Federal Reserve Bank of Atlanta.
  12. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-70, November.
  13. Frank Smets & Raf Wouters, 2004. "Forecasting with a Bayesian DSGE Model: an application to the euro area," Working Paper Research 60, National Bank of Belgium.
  14. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
  15. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
  16. Massimiliano Marcellino, . "Forecasting EMU macroeconomic variables," Working Papers 216, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  17. Peter N. Ireland, 1999. "A Method for Taking Models to the Data," Boston College Working Papers in Economics 421, Boston College Department of Economics.
  18. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
  19. Consolo, Agostino & Favero, Carlo A. & Paccagnini, Alessia, 2009. "On the statistical identification of DSGE models," Journal of Econometrics, Elsevier, vol. 150(1), pages 99-115, May.
  20. Marco Del Negro & Frank Schorfheide, 2006. "How good is what you've got? DSGE-VAR as a toolkit for evaluating DSGE models," Economic Review, Federal Reserve Bank of Atlanta, issue Q 2, pages 21-37.
  21. Chudik , A. & Pesaran, M.H., 2007. "Infinite Dimensional VARs and Factor Models," Cambridge Working Papers in Economics 0757, Faculty of Economics, University of Cambridge.
  22. Mario Forni & Lucrezia Reichlin, 1996. "Dynamic common factors in large cross-sections," ULB Institutional Repository 2013/10149, ULB -- Universite Libre de Bruxelles.
  23. Ellen R. McGrattan, 1991. "The macroeconomic effects of distortionary taxation," Discussion Paper / Institute for Empirical Macroeconomics 37, Federal Reserve Bank of Minneapolis.
  24. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
  25. Eric M. Leeper & Christopher A. Sims, 1994. "Toward a Modern Macroeconomic Model Usable for Policy Analysis," NBER Chapters, in: NBER Macroeconomics Annual 1994, Volume 9, pages 81-140 National Bureau of Economic Research, Inc.
  26. Bańbura, Marta & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Large Bayesian VARs," Working Paper Series 0966, European Central Bank.
  27. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
  28. Julio Rotemberg & Michael Woodford, 1997. "An Optimization-Based Econometric Framework for the Evaluation of Monetary Policy," NBER Chapters, in: NBER Macroeconomics Annual 1997, Volume 12, pages 297-361 National Bureau of Economic Research, Inc.
  29. Adolfson, Malin & Andersson, Michael K. & Lindé, Jesper & Villani, Mattias & Vredin, Anders, 2005. "Modern Forecasting Models in Action: Improving Macroeconomic Analyses at Central Banks," Working Paper Series 188, Sveriges Riksbank (Central Bank of Sweden), revised 01 Jun 2006.
  30. Chib, Siddhartha & Ramamurthy, Srikanth, 2010. "Tailored randomized block MCMC methods with application to DSGE models," Journal of Econometrics, Elsevier, vol. 155(1), pages 19-38, March.
  31. Gonzalo Fernandez-de-Córdoba & José L. Torres, 2009. "Forecasting the Spanish economy with an Augmented VAR-DSGE model," Working Papers 2009-1, Universidad de Málaga, Department of Economic Theory, Málaga Economic Theory Research Center.
  32. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules And Macroeconomic Stability: Evidence And Some Theory," The Quarterly Journal of Economics, MIT Press, vol. 115(1), pages 147-180, February.
  33. Sumru Altug, 1986. "Time to build and aggregate fluctuations: some new evidence," Working Papers 277, Federal Reserve Bank of Minneapolis.
  34. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, 05.
  35. Thomas Lubik & Frank Schorfheide, 2002. "Testing for Indeterminacy:An Application to U.S. Monetary Policy," Economics Working Paper Archive 480, The Johns Hopkins University,Department of Economics, revised Jun 2003.
  36. Richard M. Todd, 1984. "Improving economic forecasting with Bayesian vector autoregression," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Fall.
  37. Jouchi Nakajima & Munehisa Kasuya & Toshiaki Watanabe, 2009. "Bayesian Analysis of Time-Varying Parameter Vector Autoregressive Model for the Japanese Economy and Monetary Policy," Global COE Hi-Stat Discussion Paper Series gd09-072, Institute of Economic Research, Hitotsubashi University.
  38. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  39. Christoffel, Kai & Coenen, Günter & Warne, Anders, 2008. "The New Area-Wide Model of the euro area: a micro-founded open-economy model for forecasting and policy analysis," Working Paper Series 0944, European Central Bank.
  40. Ben S. Bernanke & Jean Boivin, 2001. "Monetary Policy in a Data-Rich Environment," NBER Working Papers 8379, National Bureau of Economic Research, Inc.
  41. Boivin, Jean & Giannoni, Marc P. & Mihov, Ilian, 2006. "Sticky prices and monetary policy: Evidence from disaggregated US data," CFS Working Paper Series 2007/14, Center for Financial Studies (CFS).
  42. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  43. Marcin Kolasa & Michał Rubaszek & Paweł Skrzypczyński, 2012. "Putting the New Keynesian DSGE Model to the Real‐Time Forecasting Test," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1301-1324, October.
  44. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
  45. Lawrence J. Christiano & Martin Eichenbaum, 1990. "Current real business cycle theories and aggregate labor market fluctuations," Working Paper Series, Macroeconomic Issues 90, Federal Reserve Bank of Chicago.
  46. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, 09.
  47. Ingram, Beth F. & Whiteman, Charles H., 1994. "Supplanting the 'Minnesota' prior: Forecasting macroeconomic time series using real business cycle model priors," Journal of Monetary Economics, Elsevier, vol. 34(3), pages 497-510, December.
  48. Ghent, Andra C., 2009. "Comparing DSGE-VAR forecasting models: How big are the differences?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 864-882, April.
  49. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
  50. Canova, Fabio, 1994. "Statistical Inference in Calibrated Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(S), pages S123-44, Suppl. De.
  51. Kadiyala, K. Rao & Karlsson, Sune, 1994. "Numerical Aspects of Bayesian VAR-modeling," Working Paper Series in Economics and Finance 12, Stockholm School of Economics.
  52. Kim, Jinill, 2000. "Constructing and estimating a realistic optimizing model of monetary policy," Journal of Monetary Economics, Elsevier, vol. 45(2), pages 329-359, April.
  53. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
  54. Del Negro, Marco & Schorfheide, Frank & Smets, Frank & Wouters, Rafael, 2007. "On the Fit of New Keynesian Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 123-143, April.
  55. DeJong, David N & Ingram, Beth Fisher & Whiteman, Charles H, 1996. "A Bayesian Approach to Calibration," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 1-9, January.
  56. Marco Del Negro & Frank Schorfheide, 2012. "DSGE model-based forecasting," Staff Reports 554, Federal Reserve Bank of New York.
  57. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
  58. Robert G. King, 2000. "The new IS-LM model : language, logic, and limits," Economic Quarterly, Federal Reserve Bank of Richmond, issue Sum, pages 45-103.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:298-323. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.