Advanced Search
MyIDEAS: Login to save this paper or follow this series

Using simulation methods for Bayesian econometric models: inference, development, and communication

Contents:

Author Info

  • John Geweke

Abstract

This paper surveys the fundamental principles of subjective Bayesian inference in econometrics and the implementation of those principles using posterior simulation methods. The emphasis is on the combination of models and the development of predictive distributions. Moving beyond conditioning on a fixed number of completely specified models, the paper introduces subjective Bayesian tools for formal comparison of these models with as yet incompletely specified models. The paper then shows how posterior simulators can facilitate communication between investigators (for example, econometricians) on the one hand and remote clients (for example, decision makers) on the other, enabling clients to vary the prior distributions and functions of interest employed by investigators. A theme of the paper is the practicality of subjective Bayesian methods. To this end, the paper describes publicly available software for Bayesian inference, model development, and communication and provides illustrations using two simple econometric models.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://minneapolisfed.org/research/common/pub_detail.cfm?pb_autonum_id=725
Download Restriction: no

File URL: http://minneapolisfed.org/research/sr/sr249.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Federal Reserve Bank of Minneapolis in its series Staff Report with number 249.

as in new window
Length:
Date of creation: 1998
Date of revision:
Handle: RePEc:fip:fedmsr:249

Contact details of provider:
Postal: 90 Hennepin Avenue, P.O. Box 291, Minneapolis, MN 55480-0291
Phone: (612) 204-5000
Web page: http://minneapolisfed.org/
More information through EDIRC

Order Information:
Email:
Web: http://www.minneapolisfed.org/pubs/

Related research

Keywords: Econometrics;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. John Geweke, 1995. "Monte Carlo simulation and numerical integration," Staff Report 192, Federal Reserve Bank of Minneapolis.
  2. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(03), pages 409-431, August.
  3. John Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
  4. Hans M. Amman & David A. Kendrick, . "Computational Economics," Online economics textbooks, SUNY-Oswego, Department of Economics, number comp1, Spring.
  5. Geweke, John, 1989. "Exact predictive densities for linear models with arch disturbances," Journal of Econometrics, Elsevier, vol. 40(1), pages 63-86, January.
  6. Kiefer, Nicholas M & Salmon, Mark, 1982. "Testing Normality in Econometric Models," The Warwick Economics Research Paper Series (TWERPS) 216, University of Warwick, Department of Economics.
  7. John F. Geweke & Michael P. Keane, 1997. "Mixture of normals probit models," Staff Report 237, Federal Reserve Bank of Minneapolis.
  8. Poirier, Dale J., 1997. "Comparing and choosing between two models with a third model in the background," Journal of Econometrics, Elsevier, vol. 78(2), pages 139-151, June.
  9. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
  10. Roberts, G. O. & Smith, A. F. M., 1994. "Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms," Stochastic Processes and their Applications, Elsevier, vol. 49(2), pages 207-216, February.
  11. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
  12. Geweke, John, 1988. "Antithetic acceleration of Monte Carlo integration in Bayesian inference," Journal of Econometrics, Elsevier, vol. 38(1-2), pages 73-89.
  13. repec:cup:etheor:v:12:y:1996:i:3:p:409-31 is not listed on IDEAS
  14. Zellner, Arnold, 1985. "Bayesian Econometrics," Econometrica, Econometric Society, vol. 53(2), pages 253-69, March.
  15. ENGLE, Robert F. & HENDRY, David F. & RICHARD, Jean-François, . "Exogeneity," CORE Discussion Papers RP -516, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    • Engle, Robert F & Hendry, David F & Richard, Jean-Francois, 1983. "Exogeneity," Econometrica, Econometric Society, vol. 51(2), pages 277-304, March.
  16. Poirier, Dale J, 1988. "Frequentist and Subjectivist Perspectives on the Problems of Model Building in Economics," Journal of Economic Perspectives, American Economic Association, vol. 2(1), pages 121-44, Winter.
  17. Steel, M.F.J. & Richard, J.F., 1989. "Bayesian Multivariate Exogeneity Analysis: An Application To A Uk Money Demand Equation," Papers 8929, Tilburg - Center for Economic Research.
  18. Anglin, Paul M & Gencay, Ramazan, 1996. "Semiparametric Estimation of a Hedonic Price Function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 633-48, Nov.-Dec..
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:fip:fedmsr:249. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Janelle Ruswick).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.