Advanced Search
MyIDEAS: Login

Putting the New Keynesian DSGE model to the real-time forecasting test

Contents:

Author Info

  • Kolasa, Marcin
  • Rubaszek, Michał
  • Skrzypczyński, Paweł

Abstract

Dynamic stochastic general equilibrium models have recently become standard tools for policy-oriented analyses. Nevertheless, their forecasting properties are still barely explored. We fill this gap by comparing the quality of real-time forecasts from a richly-specified DSGE model to those from the Survey of Professional Forecasters, Bayesian VARs and VARs using priors from a DSGE model. We show that the analyzed DSGE model is relatively successful in forecasting the US economy in the period of 1994-2008. Except for short-term forecasts of inflation and interest rates, it is as good as or clearly outperforms BVARs and DSGE-VARs. Compared to the SPF, the DSGE model generates better output forecasts at longer horizons, but less accurate short-term forecasts for interest rates. Conditional on experts' now casts, however, the forecasting power of the DSGE turns out to be similar or better than that of the SPF for all the variables and horizons. JEL Classification: C11, C32, C53, D58, E17

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1110.pdf
Download Restriction: no

Bibliographic Info

Paper provided by European Central Bank in its series Working Paper Series with number 1110.

as in new window
Length:
Date of creation: Nov 2009
Date of revision:
Handle: RePEc:ecb:ecbwps:20091110

Contact details of provider:
Postal: Postfach 16 03 19, Frankfurt am Main, Germany
Phone: +49 69 1344 0
Fax: +49 69 1344 6000
Web page: http://www.ecb.europa.eu/home/html/index.en.html
More information through EDIRC

Order Information:
Postal: Press and Information Division, European Central Bank, Kaiserstrasse 29, 60311 Frankfurt am Main, Germany
Email:

Related research

Keywords: Bayesian VAR; DSGE; forecasting; real-time data; SPF;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, 09.
  2. Malin Adolfson & Jesper Linde & Mattias Villani, 2007. "Forecasting Performance of an Open Economy DSGE Model," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 289-328.
  3. Tom Stark and Dean Croushore, 2001. "Forecasting with a Real-Time Data Set for Macroeconomists," Computing in Economics and Finance 2001 258, Society for Computational Economics.
  4. Lawrence J. Christiano & Martin Eichenbaum & Charles Evans, 2001. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," NBER Working Papers 8403, National Bureau of Economic Research, Inc.
  5. Rochelle M. Edge & Michael T. Kiley & Jean-Philippe Laforte, 2008. "A Comparison Of Forecast Performance Between Federal Reserve Staff Forecasts, Simple Reduced-Form Models, And A Dsge Model," CAMA Working Papers 2009-03, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  6. Smets, Frank & Wouters, Raf, 2007. "Shocks and frictions in US business cycles: a Bayesian DSGE approach," Working Paper Series 0722, European Central Bank.
  7. Marco Del Negro & Frank Schorfheide, 2002. "Priors from general equilibrium models for VARs," Working Paper 2002-14, Federal Reserve Bank of Atlanta.
  8. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
  9. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Thomas J. Sargent & Mark Watson, 2006. "A,B,C's (and D's)'s for Understanding VARS," Levine's Bibliography 321307000000000646, UCLA Department of Economics.
  10. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  11. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
  12. Croushore Dean, 2010. "An Evaluation of Inflation Forecasts from Surveys Using Real-Time Data," The B.E. Journal of Macroeconomics, De Gruyter, vol. 10(1), pages 1-32, May.
  13. Kirdan Lees & Troy Matheson & Christie Smith, 2007. "Open Economy Dsge-Var Forecasting And Policy Analysis: Head To Head With The Rbnz Published Forecasts," CAMA Working Papers 2007-05, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  14. Miles S. Kimball, 1996. "The Quantitative Analytics of the Basic Neomonetarist Model," NBER Working Papers 5046, National Bureau of Economic Research, Inc.
  15. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  16. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, issue Q1, pages 4-18.
  17. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-68, November.
  18. Rubaszek, Michal & Skrzypczynski, Pawel, 2008. "On the forecasting performance of a small-scale DSGE model," International Journal of Forecasting, Elsevier, vol. 24(3), pages 498-512.
  19. John B. Taylor & Volker Wieland, 2009. "Surprising Comparative Properties of Monetary Models: Results from a New Data Base," NBER Working Papers 14849, National Bureau of Economic Research, Inc.
  20. Woodford, Michael, 1995. "The Quantitative Analytics of the Basic Neomonetarist Model: Comment," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 27(4), pages 1278-89, November.
  21. Del Negro, Marco & Schorfheide, Frank & Smets, Frank & Wouters, Rafael, 2007. "On the Fit of New Keynesian Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 123-143, April.
Full references (including those not matched with items on IDEAS)

Citations

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:
  1. DSGE models and forecasting
    by Christian Zimmermann in NEP-DGE blog on 2009-12-21 00:35:25
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Stelios Bekiros & Alessia Paccagnini, 2013. "On the predictability of time-varying VAR and DSGE models," Empirical Economics, Springer, vol. 45(1), pages 635-664, August.
  2. Bekiros, Stelios D. & Paccagnini, Alessia, 2014. "Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 298-323.
  3. Alessia Paccagnini, 2012. "Comparing Hybrid DSGE Models," Working Papers 228, University of Milano-Bicocca, Department of Economics, revised Dec 2012.
  4. Marco Del Negro & Frank Schorfheide, 2012. "DSGE model-based forecasting," Staff Reports 554, Federal Reserve Bank of New York.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20091110. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Official Publications).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.