IDEAS home Printed from https://ideas.repec.org/p/wrk/wrkemf/35.html
   My bibliography  Save this paper

Real-Time Perceptions of Historical GDP Data Uncertainty

Author

Listed:
  • Galvao, Ana Beatriz

    (University of Warwick)

  • Mitchell, James

    (University of Warwick)

Abstract

GDP is measured with error. But data uncertainty is rarely communicated quantitatively in real-time. An exception are the fan charts for historical GDP growth published by the Bank of England. To assess how well understood data uncertainty is, we first evaluate the accuracy of the historical fan charts and compare them with models of past revisions data. Secondly, to gauge perceptions of GDP data uncertainty across a wider set of experts, we conduct a new online survey. Our results call for greater communication of data uncertainties, to anchor dispersed expectations of data uncertainty. But they suggest that transitory data uncertainties can be adequately quantified, even without judgement, using past revisions data.

Suggested Citation

  • Galvao, Ana Beatriz & Mitchell, James, 2020. "Real-Time Perceptions of Historical GDP Data Uncertainty," EMF Research Papers 35, Economic Modelling and Forecasting Group.
  • Handle: RePEc:wrk:wrkemf:35
    as

    Download full text from publisher

    File URL: https://warwick.ac.uk/fac/soc/wbs/subjects/finance/mpf/working-papers/emf_wp_35.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    2. James Mitchell & Donald Robertson & Stephen Wright, 2019. "R2 Bounds for Predictive Models: What Univariate Properties Tell us About Multivariate Predictability," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 681-695, October.
    3. John W. Galbraith & Simon van Norden, 2012. "Assessing gross domestic product and inflation probability forecasts derived from Bank of England fan charts," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(3), pages 713-727, July.
    4. Groen, Jan J.J. & Kapetanios, George & Price, Simon, 2009. "A real time evaluation of Bank of England forecasts of inflation and growth," International Journal of Forecasting, Elsevier, vol. 25(1), pages 74-80.
    5. repec:taf:jnlbes:v:30:y:2012:i:2:p:181-190 is not listed on IDEAS
    6. Faust, Jon & Rogers, John H & Wright, Jonathan H, 2005. "News and Noise in G-7 GDP Announcements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 403-419, June.
    7. James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR ‘Fan’ Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
    8. Athanasios Orphanides, 2001. "Monetary Policy Rules Based on Real-Time Data," American Economic Review, American Economic Association, vol. 91(4), pages 964-985, September.
    9. van der Bles, Anne Marthe & van der Liden, Sander & Freeman, Alessandra L. J. & Mitchell, James & Galvao, Ana Beatriz & Spiegelhalter, David J., 2019. "Communicating uncertainty about facts, numbers, and science," EMF Research Papers 22, Economic Modelling and Forecasting Group.
    10. Anthony Garratt & Shaun P Vahey, 2006. "UK Real-Time Macro Data Characteristics," Economic Journal, Royal Economic Society, vol. 116(509), pages 119-135, February.
    11. Joshua Abel & Robert Rich & Joseph Song & Joseph Tracy, 2016. "The Measurement and Behavior of Uncertainty: Evidence from the ECB Survey of Professional Forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 533-550, April.
    12. Dean Croushore, 2011. "Frontiers of Real-Time Data Analysis," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
    13. repec:taf:jnlbes:v:30:y:2012:i:2:p:173-180 is not listed on IDEAS
    14. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    15. S. Borağan Aruoba, 2008. "Data Revisions Are Not Well Behaved," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2‐3), pages 319-340, March.
    16. Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," National Institute of Economic and Social Research (NIESR) Discussion Papers 253, National Institute of Economic and Social Research.
    17. Domenico Giannone & Jérôme Henry & Magdalena Lalik & Michele Modugno, 2012. "An Area-Wide Real-Time Database for the Euro Area," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1000-1013, November.
    18. Richard McKenzie, 2006. "Undertaking Revisions and Real-Time Data Analysis using the OECD Main Economic Indicators Original Release Data and Revisions Database," OECD Statistics Working Papers 2006/2, OECD Publishing.
    19. Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
    20. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    21. Aruoba, S. Borağan & Diebold, Francis X. & Nalewaik, Jeremy & Schorfheide, Frank & Song, Dongho, 2016. "Improving GDP measurement: A measurement-error perspective," Journal of Econometrics, Elsevier, vol. 191(2), pages 384-397.
    22. Aoki, Kosuke, 2003. "On the optimal monetary policy response to noisy indicators," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 501-523, April.
    23. Michael P. Clements, 2004. "Evaluating the Bank of England Density Forecasts of Inflation," Economic Journal, Royal Economic Society, vol. 114(498), pages 844-866, October.
    24. Charles F. Manski, 2004. "Measuring Expectations," Econometrica, Econometric Society, vol. 72(5), pages 1329-1376, September.
    25. N. Gregory Mankiw & Matthew D. Shapiro, 1986. "News or Noise? An Analysis of GNP Revisions," NBER Working Papers 1939, National Bureau of Economic Research, Inc.
    26. Andrew Haldane & Michael McMahon, 2018. "Central Bank Communications and the General Public," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 578-583, May.
    27. James Mitchell & Kenneth F. Wallis, 2011. "Evaluating density forecasts: forecast combinations, model mixtures, calibration and sharpness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 1023-1040, September.
    28. Zarnowitz, Victor & Lambros, Louis A, 1987. "Consensus and Uncertainty in Economic Prediction," Journal of Political Economy, University of Chicago Press, vol. 95(3), pages 591-621, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Density Forecasts and Density Realizations
      by Francis Diebold in No Hesitations on 2020-08-10 18:53:00

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Beatriz Galvão & James Mitchell, 2019. "Measuring Data Uncertainty: An Application using the Bank of England's "Fan Charts" for Historical GDP Growth," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-08, Economic Statistics Centre of Excellence (ESCoE).
    2. Emilia Tomczyk, 2013. "End of sample vs. real time data: perspectives for analysis of expectations," Working Papers 68, Department of Applied Econometrics, Warsaw School of Economics.
    3. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Michael P. Clements, 2014. "Anticipating Early Data Revisions to US GDP and the Effects of Releases on Equity Markets," ICMA Centre Discussion Papers in Finance icma-dp2014-06, Henley Business School, University of Reading.
    5. Carlo Altavilla & Matteo Ciccarelli, 2011. "Monetary Policy Analysis in Real-Time. Vintage Combination from a Real-Time Dataset," CESifo Working Paper Series 3372, CESifo.
    6. M. Mogliani & T. Ferrière, 2016. "Rationality of announcements, business cycle asymmetry, and predictability of revisions. The case of French GDP," Working papers 600, Banque de France.
    7. Dean Croushore, 2011. "Frontiers of Real-Time Data Analysis," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
    8. Francisco Castro & Javier J. P√Ârez & Marta Rodr√Çguez-Vives, 2013. "Fiscal Data Revisions in Europe," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(6), pages 1187-1209, September.
    9. Galvao, Ana Beatriz & Mitchell, James & Runge, Johnny, 2019. "Communicating Data Uncertainty: Experimental Evidence for U.K. GDP," EMF Research Papers 30, Economic Modelling and Forecasting Group.
    10. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    11. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    12. Marc-Oliver Pohle, 2020. "The Murphy Decomposition and the Calibration-Resolution Principle: A New Perspective on Forecast Evaluation," Papers 2005.01835, arXiv.org.
    13. Baetje, Fabian & Friedrici, Karola, 2016. "Does cross-sectional forecast dispersion proxy for macroeconomic uncertainty? New empirical evidence," Economics Letters, Elsevier, vol. 143(C), pages 38-43.
    14. Strohsal, Till & Wolf, Elias, 2020. "Data revisions to German national accounts: Are initial releases good nowcasts?," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1252-1259.
    15. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    16. Clements, Michael P., 2019. "Do forecasters target first or later releases of national accounts data?," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1240-1249.
    17. Knüppel, Malte & Schultefrankenfeld, Guido, 2019. "Assessing the uncertainty in central banks’ inflation outlooks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1748-1769.
    18. Strohsal, Till & Wolf, Elias, 2019. "Data revisions to German national accounts: Are initial releases good nowcasts?," Discussion Papers 2019/11, Free University Berlin, School of Business & Economics.
    19. Marek RUSNAK, 2013. "Revisions to the Czech National Accounts: Properties and Predictability," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(3), pages 244-261, July.
    20. Michael P. Clements, 2017. "Assessing Macro Uncertainty in Real-Time When Data Are Subject To Revision," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 420-433, July.

    More about this item

    Keywords

    data revisions ; fan charts ; expectations survey ; backcasts ; density forecast calibration ;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wrk:wrkemf:35. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/emwaruk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Galvão (email available below). General contact details of provider: https://edirc.repec.org/data/emwaruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.