IDEAS home Printed from https://ideas.repec.org/p/pen/papers/13-016.html
   My bibliography  Save this paper

Improving GDP Measurement: A Measurement-Error Perspective

Author

Listed:
  • Boragan Aruoba

    (Department of Economics, University of Maryland)

  • Francis X. Diebold

    (Department of Economics, University of Pennsylvania)

  • Jeremy Nalewaik

    (Division of Research and Statistics, Board of Governors, Federal Reserve Board)

  • Frank Schorfheide

    (Department of Economics, University of Pennsylvania)

  • Dongho Song

    (Department of Economics, University of Pennsylvania)

Abstract

We provide a new and superior measure of U.S. GDP, obtained by applying optimal signal-extraction techniques to the (noisy) expenditure-side and income-side estimates. Its properties - particularly as regards serial correlation - differ markedly from those of the standard expenditure-side measure and lead to substantially-revised views regarding the properties of GDP.

Suggested Citation

  • Boragan Aruoba & Francis X. Diebold & Jeremy Nalewaik & Frank Schorfheide & Dongho Song, 2013. "Improving GDP Measurement: A Measurement-Error Perspective," PIER Working Paper Archive 13-016, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  • Handle: RePEc:pen:papers:13-016
    as

    Download full text from publisher

    File URL: https://economics.sas.upenn.edu/sites/default/files/filevault/13-016.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. S. Borağan Aruoba, 2008. "Data Revisions Are Not Well Behaved," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2‐3), pages 319-340, March.
    2. Ryan Greenaway-McGrevy, 2011. "Is GDP or GDI a better measure of output? A statistical approach," BEA Working Papers 0076, Bureau of Economic Analysis.
    3. Jeremy J. Nalewaik, 2010. "The Income- and Expenditure-Side Estimates of U.S. Output Growth," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(1 (Spring), pages 71-127.
    4. Ivana Komunjer & Serena Ng, 2011. "Dynamic Identification of Dynamic Stochastic General Equilibrium Models," Econometrica, Econometric Society, vol. 79(6), pages 1995-2032, November.
    5. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, December.
    6. Francis X. Diebold & Lutz Kilian, 2001. "Measuring predictability: theory and macroeconomic applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(6), pages 657-669.
    7. S. Boragan Aruoba & Francis X. Diebold & Jeremy J. Nalewaik & Frank Schorfheide & Dongho Song, 2011. "Improving GDP measurement: a forecast combination perspective," Working Papers 11-41, Federal Reserve Bank of Philadelphia.
    8. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    9. Faust, Jon & Rogers, John H & Wright, Jonathan H, 2005. "News and Noise in G-7 GDP Announcements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 403-419, June.
    10. repec:taf:jnlbes:v:30:y:2012:i:2:p:181-190 is not listed on IDEAS
    11. Richard Stone & D. G. Champernowne & J. E. Meade, 1942. "The Precision of National Income Estimates," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 9(2), pages 111-125.
    12. Richard J. Smith & Martin R. Weale & Steven E. Satchell, 1998. "Measurement Error with Accounting Constraints: Point and Interval Estimation for Latent Data with an Application to U.K. Gross Domestic Product," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(1), pages 109-134.
    13. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    14. N. Gregory Mankiw & Matthew D. Shapiro, 1986. "News or Noise? An Analysis of GNP Revisions," NBER Working Papers 1939, National Bureau of Economic Research, Inc.
    15. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    16. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    17. J. Steven Landefeld & Eugene P. Seskin & Barbara M. Fraumeni, 2008. "Taking the Pulse of the Economy: Measuring GDP," Journal of Economic Perspectives, American Economic Association, vol. 22(2), pages 193-216, Spring.
    18. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martín Almuzara & Dante Amengual & Enrique Sentana, 2019. "Normality tests for latent variables," Quantitative Economics, Econometric Society, vol. 10(3), pages 981-1017, July.
    2. Tincho Almuzara & Dante Amengual & Enrique Sentana, 2017. "Normality Tests for Latent Variables," Working Papers wp2018_1708, CEMFI.
    3. Martín Almuzara & Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2024. "GDP Solera: The Ideal Vintage Mix," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 984-997, July.
    4. Michael P. Clements, 2014. "Anticipating Early Data Revisions to US GDP and the Effects of Releases on Equity Markets," ICMA Centre Discussion Papers in Finance icma-dp2014-06, Henley Business School, University of Reading.
    5. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    6. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    7. Ana Beatriz Galvão & James Mitchell, 2023. "Real‐Time Perceptions of Historical GDP Data Uncertainty," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 457-481, June.
    8. Clements, Michael P., 2019. "Do forecasters target first or later releases of national accounts data?," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1240-1249.
    9. Jan P.A.M. Jacobs & Samad Sarferaz & Simon van Norden & Jan-Egbert Sturm, 2013. "Modeling Multivariate Data Revisions," CIRANO Working Papers 2013s-44, CIRANO.
    10. Valentina Raponi & Cecilia Frale, 2014. "Revisions in official data and forecasting," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 451-472, August.
    11. Richard G. Anderson & Charles S. Gascon, 2009. "Estimating U.S. output growth with vintage data in a state-space framework," Review, Federal Reserve Bank of St. Louis, vol. 91(Jul), pages 349-370.
    12. Dennis J. Fixler & Jeremy J. Nalewaik, 2007. "News, noise, and estimates of the \"true\" unobserved state of the economy," Finance and Economics Discussion Series 2007-34, Board of Governors of the Federal Reserve System (U.S.).
    13. Jan Jacobs & Jan-Egbert Sturm, 2009. "The information content of KOF indicators on Swiss current account data revisions," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2008(2), pages 161-181.
    14. Clements, Michael P. & Beatriz Galvao, Ana, 2010. "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," Economic Research Papers 270771, University of Warwick - Department of Economics.
    15. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    16. James Mitchell & Gary Koop & Stuart McIntyre & Aubrey Poon, 2020. "Reconciled Estimates of Monthly GDP in the US," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2020-16, Economic Statistics Centre of Excellence (ESCoE).
    17. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
    18. Emilia Tomczyk, 2013. "End of sample vs. real time data: perspectives for analysis of expectations," Working Papers 68, Department of Applied Econometrics, Warsaw School of Economics.
    19. M. Mogliani & T. Ferrière, 2016. "Rationality of announcements, business cycle asymmetry, and predictability of revisions. The case of French GDP," Working papers 600, Banque de France.
    20. Gabriele Fiorentini & Enrique Sentana, 2019. "Dynamic specification tests for dynamic factor models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 325-346, April.

    More about this item

    Keywords

    Income; Output; expenditure; business cycle; expansion; contraction; recession; turning point; state-space model; dynamic factor model; forecast combination;
    All these keywords.

    JEL classification:

    • E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pen:papers:13-016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrator (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.