IDEAS home Printed from https://ideas.repec.org/p/bea/wpaper/0076.html
   My bibliography  Save this paper

Is GDP or GDI a better measure of output? A statistical approach

Author

Listed:
  • Ryan Greenaway-McGrevy

    (Bureau of Economic Analysis)

Abstract

Gross domestic product (GDP) and gross domestic income (GDI) are in theory estimates of the same concept, namely economic production over a defined span of time and space. Yet the two measures are compiled using different source data, and the two measures often give different indications of the direction of the economy. This raises the issue of which of the two measures is a more accurate estimate of economic production. In this paper we present a time-series statistical framework for addressing this issue. Our findings indicate that the latest vintage of GDP has been a better measure of true output over the 1983-2009 period than the latest vintage of GDI. Our model also implies an optimal weighting of GDP and GDI can yield a more accurate estimate of economic output than either GDP or GDI alone. Our empirical findings indicate that a weighting of approximately 60% to GDP yields the best estimate for the 1983-2009 period. When we consider vintages of estimated output, we find that GDI often contains additional information to GDP regarding true output.

Suggested Citation

  • Ryan Greenaway-McGrevy, 2011. "Is GDP or GDI a better measure of output? A statistical approach," BEA Working Papers 0076, Bureau of Economic Analysis.
  • Handle: RePEc:bea:wpaper:0076
    as

    Download full text from publisher

    File URL: https://www.bea.gov/system/files/papers/WP2011-8.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N. Gregory Mankiw & Matthew D. Shapiro, 1986. "News or Noise? An Analysis of GNP Revisions," NBER Working Papers 1939, National Bureau of Economic Research, Inc.
    2. Dennis Fixler & Bruce Grimm, 2006. "GDP Estimates: Rationality Tests and Turning Point Performance," Journal of Productivity Analysis, Springer, vol. 25(3), pages 213-229, June.
    3. Gabriel Perez-Quiros & Margaret M. McConnell, 2000. "Output Fluctuations in the United States: What Has Changed since the Early 1980's?," American Economic Review, American Economic Association, vol. 90(5), pages 1464-1476, December.
    4. Margaret M. McConnell & Gabriel Perez-Quiros, 2000. "Output fluctuations in the United States: what has changed since the early 1980s?," Proceedings, Federal Reserve Bank of San Francisco, issue mar.
    5. Bruce T. Grimm, 2005. "Alternative Measures of U.S. Economic Activity in Business Cycles and Business Cycle Dating," BEA Papers 0052, Bureau of Economic Analysis.
    6. Patterson, K. D., 1994. "A state space model for reducing the uncertainty associated with preliminary vintages of data with an application to aggregate consumption," Economics Letters, Elsevier, vol. 46(3), pages 215-222, November.
    7. Weale, Martin, 1992. "Estimation of Data Measured with Error and Subject to Linear Restrictions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(2), pages 167-174, April-Jun.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martín Almuzara & Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2024. "GDP Solera: The Ideal Vintage Mix," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 984-997, July.
    2. Martín Almuzara & Gabriele Fiorentini & Enrique Sentana, 2023. "Aggregate Output Measurements: A Common Trend Approach," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 3-33, Emerald Group Publishing Limited.
    3. Mary C. Daly & John G. Fernald & Òscar Jordà & Fernanda Nechio, 2013. "Shocks and Adjustments," Working Paper Series 2013-32, Federal Reserve Bank of San Francisco.
    4. Aruoba, S. Borağan & Diebold, Francis X. & Nalewaik, Jeremy & Schorfheide, Frank & Song, Dongho, 2016. "Improving GDP measurement: A measurement-error perspective," Journal of Econometrics, Elsevier, vol. 191(2), pages 384-397.
    5. Martín Almuzara & Dante Amengual & Enrique Sentana, 2019. "Normality tests for latent variables," Quantitative Economics, Econometric Society, vol. 10(3), pages 981-1017, July.
    6. Tincho Almuzara & Dante Amengual & Enrique Sentana, 2017. "Normality Tests for Latent Variables," Working Papers wp2018_1708, CEMFI.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis J. Fixler & Jeremy J. Nalewaik, 2007. "News, noise, and estimates of the \"true\" unobserved state of the economy," Finance and Economics Discussion Series 2007-34, Board of Governors of the Federal Reserve System (U.S.).
    2. Hännikäinen Jari, 2017. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    3. Jari Hännikäinen, 2014. "Multi-step forecasting in the presence of breaks," Working Papers 1494, Tampere University, Faculty of Management and Business, Economics.
    4. Boragan Aruoba & Francis X. Diebold & Jeremy Nalewaik & Frank Schorfheide & Dongho Song, 2011. "Improving GDP Measurement: A Forecast Combination Perspective," PIER Working Paper Archive 11-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    5. Michael P Clements & Ana Beatriz Galvao, 2017. "Data Revisions and Real-time Probabilistic Forecasting of Macroeconomic Variables," ICMA Centre Discussion Papers in Finance icma-dp2017-01, Henley Business School, University of Reading.
    6. Douglas Sutherland & Peter Hoeller & Balázs Égert & Oliver Röhn, 2010. "Counter-cyclical Economic Policy," OECD Economics Department Working Papers 760, OECD Publishing.
    7. Alban Moura, 2023. "Trend breaks and the long-run implications of investment-specific technological progress," Applied Economics Letters, Taylor & Francis Journals, vol. 30(16), pages 2270-2275, September.
    8. van Dijk, Dick & Hans Franses, Philip & Peter Boswijk, H., 2007. "Absorption of shocks in nonlinear autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4206-4226, May.
    9. Pablo Burriel & Jesús Fernández-Villaverde & Juan Rubio-Ramírez, 2010. "MEDEA: a DSGE model for the Spanish economy," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 1(1), pages 175-243, March.
    10. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    11. Ayse Kabukcuoglu & Enrique Martínez-García, 2016. "What Helps Forecast U.S. Inflation?—Mind the Gap!," Koç University-TUSIAD Economic Research Forum Working Papers 1615, Koc University-TUSIAD Economic Research Forum.
    12. Yang Liu & Mariano Croce & Ivan Shaliastovich & Ric Colacito, 2016. "Volatility Risk Pass-Through," 2016 Meeting Papers 135, Society for Economic Dynamics.
    13. Bae, Jinho & Nelson, Charles R., 2007. "Earnings growth and the bull market of the 1990s: Is there a case for rational exuberance?," Journal of Macroeconomics, Elsevier, vol. 29(4), pages 690-707, December.
    14. Rajeev Dhawan & Karsten Jeske & Pedro Silos, 2010. "Productivity, Energy Prices and the Great Moderation: A New Link," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 13(3), pages 715-724, July.
    15. Benati, Luca, 2007. "Drift and breaks in labor productivity," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2847-2877, August.
    16. Chun-Chang Lee & Chih-Min Liang & Hsing-Jung Chou, 2013. "Identifying Taiwan real estate cycle turning points- An application of the multivariate Markov-switching autoregressive Model," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 3(2), pages 1-1.
    17. Jinho Bae & Chang-Jin Kim & Dong Kim, 2012. "The evolution of the monetary policy regimes in the U.S," Empirical Economics, Springer, vol. 43(2), pages 617-649, October.
    18. Jean Boivin & Marc P. Giannoni, 2006. "Has Monetary Policy Become More Effective?," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 445-462, August.
    19. Rodney W. Strachan & Herman K. Van Dijk, 2013. "Evidence On Features Of A Dsge Business Cycle Model From Bayesian Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 54(1), pages 385-402, February.
    20. Ahmed, Walid M.A., 2018. "On the interdependence of natural gas and stock markets under structural breaks," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 149-161.

    More about this item

    JEL classification:

    • E6 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bea:wpaper:0076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Batch (email available below). General contact details of provider: https://edirc.repec.org/data/beagvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.