IDEAS home Printed from https://ideas.repec.org/p/wfo/wpaper/y2017i544.html
   My bibliography  Save this paper

Competitiveness and Ecological Impacts of Green Energy Technologies. Firm-level Evidence for the DACH Region

Author

Listed:
  • Michael Peneder
  • Spyros Arvanitis
  • Christian Rammer
  • Tobias Stucki
  • Martin Wörter

Abstract

For a large sample of enterprises in Germany, Austria and Switzerland (the "DACH" region) we study the impact of policy instruments such as energy-related taxes, subsidies, standards and negotiated agreements, or other regulations on the firm's ecological and economic performance. To identify the causal linkages, we build a system of twelve equations, first tracking the impacts of policy on the adoption of green energy technologies for distinct areas. In a second set of equations, we estimate the perceived impacts of adoption on the firm's energy efficiency, carbon emissions and competitiveness. The results confirm a differentiated pattern of channels through which policy can affect the firm's energy efficiency and carbon emissions, while having a neutral impact on its competitiveness.

Suggested Citation

  • Michael Peneder & Spyros Arvanitis & Christian Rammer & Tobias Stucki & Martin Wörter, 2017. "Competitiveness and Ecological Impacts of Green Energy Technologies. Firm-level Evidence for the DACH Region," WIFO Working Papers 544, WIFO.
  • Handle: RePEc:wfo:wpaper:y:2017:i:544
    as

    Download full text from publisher

    File URL: https://www.wifo.ac.at/wwa/pubid/60728
    File Function: abstract
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kenneth Gillingham & Karen Palmer, 2014. "Bridging the Energy Efficiency Gap: Policy Insights from Economic Theory and Empirical Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(1), pages 18-38, January.
    2. Timothy C. Haab & John C. Whitehead, 2017. "What do Environmental and Resource Economists Think? Results from a Survey of AERE Members," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 43-58.
    3. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    4. Richard Schmalensee & Robert N. Stavins, 2017. "Lessons Learned from Three Decades of Experience with Cap and Trade," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 59-79.
    5. Buchanan, James M & Tullock, Gordon, 1975. "Polluters' Profits and Political Response: Direct Controls Versus Taxes," American Economic Review, American Economic Association, vol. 65(1), pages 139-147, March.
    6. Popp David, 2005. "Uncertain R&D and the Porter Hypothesis," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 4(1), pages 1-16, June.
    7. Stefan Ambec & Mark A. Cohen & Stewart Elgie & Paul Lanoie, 2013. "The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 2-22, January.
    8. Buenstorf, Guido, 2000. "Self-organization and sustainability: energetics of evolution and implications for ecological economics," Ecological Economics, Elsevier, vol. 33(1), pages 119-134, April.
    9. Martin Woerter & Tobias Stucki, 2016. "Intra-Firm Diffusion of Green Energy Technologies and the Choice of Policy Instruments," KOF Working papers 16-401, KOF Swiss Economic Institute, ETH Zurich.
    10. Joltreau, Eugénie & Sommerfeld, Katrin, 2016. "Why does emissions trading under the EU ETS not affect firms' competitiveness? Empirical findings from the literature," ZEW Discussion Papers 16-062, ZEW - Leibniz Centre for European Economic Research.
    11. John Foster, 2015. "Energy, Knowledge and Economic Growth," Economic Complexity and Evolution, in: Andreas Pyka & John Foster (ed.), The Evolution of Economic and Innovation Systems, edition 127, pages 9-39, Springer.
    12. Michael Peneder, 2017. "Competitiveness and industrial policy: from rationalities of failure towards the ability to evolve," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 41(3), pages 829-858.
    13. Sascha Rexhäuser & Christian Rammer, 2014. "Environmental Innovations and Firm Profitability: Unmasking the Porter Hypothesis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(1), pages 145-167, January.
    14. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    15. Horbach, Jens & Rammer, Christian & Rennings, Klaus, 2012. "Determinants of eco-innovations by type of environmental impact — The role of regulatory push/pull, technology push and market pull," Ecological Economics, Elsevier, vol. 78(C), pages 112-122.
    16. Elinor Ostrom, 2010. "Beyond Markets and States: Polycentric Governance of Complex Economic Systems," American Economic Review, American Economic Association, vol. 100(3), pages 641-672, June.
    17. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    18. George E. Halkos & Shunsuke Managi, 2017. "Measuring the Effect of Economic Growth on Countries’ Environmental Efficiency: A Conditional Directional Distance Function Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 753-775, November.
    19. George van Leeuwen & Pierre Mohnen, 2017. "Revisiting the Porter hypothesis: an empirical analysis of Green innovation for the Netherlands," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(1-2), pages 63-77, February.
    20. Imad A. Moosa, 2017. "The econometrics of the environmental Kuznets curve: an illustration using Australian CO2 emissions," Applied Economics, Taylor & Francis Journals, vol. 49(49), pages 4927-4945, October.
    21. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    22. Foster, John, 2011. "Energy, aesthetics and knowledge in complex economic systems," Journal of Economic Behavior & Organization, Elsevier, vol. 80(1), pages 88-100.
    23. R. H. Coase, 2013. "The Problem of Social Cost," Journal of Law and Economics, University of Chicago Press, vol. 56(4), pages 837-877.
    24. Paul Lanoie & Jérémy Laurent‐Lucchetti & Nick Johnstone & Stefan Ambec, 2011. "Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 20(3), pages 803-842, September.
    25. Robert N. Stavins, 2011. "The Problem of the Commons: Still Unsettled after 100 Years," American Economic Review, American Economic Association, vol. 101(1), pages 81-108, February.
    26. Antony Millner & Hélène Ollivier, 2016. "Beliefs, Politics, and Environmental Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(2), pages 226-244.
    27. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    28. Rammer, Christian & Gottschalk, Sandra & Peneder, Michael & Wörter, Martin & Stucki, Tobias & Arvanitis, Spyros, 2017. "Does energy policy hurt international competitiveness of firms? A comparative study for Germany, Switzerland and Austria," Energy Policy, Elsevier, vol. 109(C), pages 154-180.
    29. Jeroen Bergh, 2007. "Evolutionary thinking in environmental economics," Journal of Evolutionary Economics, Springer, vol. 17(5), pages 521-549, October.
    30. Kenneth J. Arrow & Anthony C. Fisher, 1974. "Environmental Preservation, Uncertainty, and Irreversibility," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 4, pages 76-84, Palgrave Macmillan.
    31. Spyros Arvanitis & Michael Peneder & Christian Rammer & Tobias Stucki & Martin Wörter, 2016. "The adoption of green energy technologies: The role of policies in an international comparison," KOF Working papers 16-411, KOF Swiss Economic Institute, ETH Zurich.
    32. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    33. Gilbert E. Metcalf, 2009. "Market-Based Policy Options to Control U.S. Greenhouse Gas Emissions," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 5-27, Spring.
    34. Andr, Francisco J. & Gonzlez, Paula & Porteiro, Nicols, 2009. "Strategic quality competition and the Porter Hypothesis," Journal of Environmental Economics and Management, Elsevier, vol. 57(2), pages 182-194, March.
    35. Yiannis Kountouris & Kyriaki Remoundou, 2016. "Cultural Influence on Preferences and Attitudes for Environmental Quality," Kyklos, Wiley Blackwell, vol. 69(2), pages 369-397, May.
    36. Karen Palmer & Wallace E. Oates & Paul R. Portney & Karen Palmer & Wallace E. Oates & Paul R. Portney, 2004. "Tightening Environmental Standards: The Benefit-Cost or the No-Cost Paradigm?," Chapters, in: Environmental Policy and Fiscal Federalism, chapter 3, pages 53-66, Edward Elgar Publishing.
    37. Christos Constantatos & Markus Herrmann, 2011. "Market Inertia and the Introduction of Green Products: Can Strategic Effects Justify the Porter Hypothesis?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 50(2), pages 267-284, October.
    38. Madhu Khanna & George Deltas & Donna Harrington, 2009. "Adoption of Pollution Prevention Techniques: The Role of Management Systems and Regulatory Pressures," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(1), pages 85-106, September.
    39. Ambec, Stefan & Barla, Philippe, 2002. "A theoretical foundation of the Porter hypothesis," Economics Letters, Elsevier, vol. 75(3), pages 355-360, May.
    40. Roger Fouquet, 2014. "Editor's Choice Long-Run Demand for Energy Services: Income and Price Elasticities over Two Hundred Years," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 186-207.
    41. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39, pages 137-137.
    42. Carl Pasurka, 2008. "Perspectives on Pollution Abatement and Competitiveness: Theory, Data, and Analyses," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(2), pages 194-218, Summer.
    43. Weitzman, Martin L., 1998. "Why the Far-Distant Future Should Be Discounted at Its Lowest Possible Rate," Journal of Environmental Economics and Management, Elsevier, vol. 36(3), pages 201-208, November.
    44. Veugelers, Reinhilde, 2012. "Which policy instruments to induce clean innovating?," Research Policy, Elsevier, vol. 41(10), pages 1770-1778.
    45. Millner, Antony & Olivier, Helene, 2016. "Beliefs, politics, and environmental policy," LSE Research Online Documents on Economics 67299, London School of Economics and Political Science, LSE Library.
    46. Sylvie Geisendorf, 2016. "The impact of personal beliefs on climate change: the “battle of perspectives” revisited," Journal of Evolutionary Economics, Springer, vol. 26(3), pages 551-580, July.
    47. Lawrence H. Goulder & Ian W. H. Parry, 2008. "Instrument Choice in Environmental Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(2), pages 152-174, Summer.
    48. Fouquet, Roger, 2014. "Long run demand for energy services: income and price elasticities over two hundred years," LSE Research Online Documents on Economics 59070, London School of Economics and Political Science, LSE Library.
    49. Lorenzo Cappellari & Stephen P. Jenkins, 2003. "Multivariate probit regression using simulated maximum likelihood," Stata Journal, StataCorp LP, vol. 3(3), pages 278-294, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimiliano Mazzanti & Francesco Nicolli & Stefano Pareglio & Marco Quatrosi, 2022. "Adoption of Eco and Circular Economy-Innovation in Italy: exploring different firm profiles," Working Papers 2022.06, Fondazione Eni Enrico Mattei.
    2. Antonioli, Davide & Ghisetti, Claudia & Mazzanti, Massimiliano & Nicolli, Francesco, 2022. "The economic returns of circular economy practices," FEEM Working Papers 319761, Fondazione Eni Enrico Mattei (FEEM).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Peneder & Spyros Arvanitis & Christian Rammer & Tobias Stucki & Martin Wörter, 2022. "Policy instruments and self-reported impacts of the adoption of energy saving technologies in the DACH region," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 49(2), pages 369-404, May.
    2. Rammer, Christian & Gottschalk, Sandra & Peneder, Michael & Wörter, Martin & Stucki, Tobias & Arvanitis, Spyros, 2017. "Does energy policy hurt international competitiveness of firms? A comparative study for Germany, Switzerland and Austria," Energy Policy, Elsevier, vol. 109(C), pages 154-180.
    3. Spyros Arvanitis & Michael Peneder & Christian Rammer & Tobias Stucki & Martin Wörter, 2016. "How Different Policy Instruments Affect the Creation of Green Energy Innovation: A Differentiated Perspective," KOF Working papers 16-417, KOF Swiss Economic Institute, ETH Zurich.
    4. Luca Lambertini & Giuseppe Pignataro & Alessandro Tampieri, 2022. "Competition among coalitions in a cournot industry: a validation of the porter hypothesis," The Japanese Economic Review, Springer, vol. 73(4), pages 679-713, October.
    5. Giovanni Marin & Francesca Lotti, 2017. "Productivity effects of eco-innovations using data on eco-patents," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(1), pages 125-148.
    6. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    7. Flavio Delbono & Luca Lambertini, 2022. "Optimal emission taxation and the Porter hypothesis under Bertrand competition," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 93(3), pages 755-765, September.
    8. Stucki, Tobias, 2019. "Which firms benefit from investments in green energy technologies? – The effect of energy costs," Research Policy, Elsevier, vol. 48(3), pages 546-555.
    9. Antoine Dechezleprêtre & Misato Sato, 2017. "The Impacts of Environmental Regulations on Competitiveness," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 183-206.
    10. Jean Pierre Huiban & Camilla Mastromarco & Antonio Musolesi & Michel Simioni, 2018. "The impact of pollution abatement investments on production technology: a nonparametric approach," SEEDS Working Papers 0918, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2018.
    11. Teemu Makkonen & Sari Repka, 2016. "The innovation inducement impact of environmental regulations on maritime transport: a literature review," International Journal of Innovation and Sustainable Development, Inderscience Enterprises Ltd, vol. 10(1), pages 69-86.
    12. Xu, Le & Yang, Lili & Li, Ding & Shao, Shuai, 2023. "Asymmetric effects of heterogeneous environmental standards on green technology innovation: Evidence from China," Energy Economics, Elsevier, vol. 117(C).
    13. Eric Giraud-Héraud & Jean-Pierre Ponssard & Bernard Sinclair Desgagné & Louis-Georges Soler, 2016. "The agro-food industry, public health, and environmental protection: investigating the Porter hypothesis in food regulation," Review of Agricultural, Food and Environmental Studies, Springer, vol. 97(2), pages 127-140, September.
    14. George van Leeuwen & Pierre Mohnen, 2017. "Revisiting the Porter hypothesis: an empirical analysis of Green innovation for the Netherlands," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(1-2), pages 63-77, February.
    15. Massimiliano Mazzanti & Giovanni Marin & Susanna Mancinelli & Francesco Nicolli, 2015. "Carbon dioxide reducing environmental innovations, sector upstream/downstream integration and policy: evidence from the EU," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(4), pages 709-735, November.
    16. Stefan Ambec & Mark A. Cohen & Stewart Elgie & Paul Lanoie, 2013. "The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 2-22, January.
    17. André, Francisco J., 2015. "Strategic Effects and the Porter Hypothesis," MPRA Paper 62237, University Library of Munich, Germany.
    18. Sascha Rexhäuser & Christian Rammer, 2014. "Environmental Innovations and Firm Profitability: Unmasking the Porter Hypothesis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(1), pages 145-167, January.
    19. Stucki, Tobias & Woerter, Martin & Arvanitis, Spyros & Peneder, Michael & Rammer, Christian, 2018. "How different policy instruments affect green product innovation: A differentiated perspective," Energy Policy, Elsevier, vol. 114(C), pages 245-261.
    20. Huiban, Jean-Pierre & Mastromarco, Camille & Musolesi, Antonio & Simioni, Michel, 2016. "The impact of pollution abatement investments on production technology: new insights from frontier analysis," Working Papers MOISA 235162, Institut National de la recherché Agronomique (INRA), UMR MOISA : Marchés, Organisations, Institutions et Stratégies d'Acteurs : CIHEAM-IAMM, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.

    More about this item

    Keywords

    Environmental policy; energy efficiency; technology adoption; innovation; Porter hypothesis;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wfo:wpaper:y:2017:i:544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Florian Mayr (email available below). General contact details of provider: https://edirc.repec.org/data/wifooat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.