IDEAS home Printed from https://ideas.repec.org/p/kof/wpskof/16-417.html
   My bibliography  Save this paper

How Different Policy Instruments Affect the Creation of Green Energy Innovation: A Differentiated Perspective

Author

Abstract

Based on representative firm-level survey data for the three countries Austria, Germany, and Switzerland, we investigate the effects of regulation, energy taxes, voluntary agreements, and subsidies, on the creation of green product innovations. Our data set allows us to distinguish between the supply-side effects (cost effects) and the demand-side effects of policy measures, which improves our understanding of the frequently observed positive net effect of policies. Controlling for the demand effect, taxes and regulations are negatively related with product innovations. Hence, if taxes and regulation do not trigger additional demand, they decrease the propensity to innovate. These effects are ameliorated for technologically very advanced firms and for firms with a high level of financial awareness. Subsidies and (partly) voluntary agreements are positively related with product innovations.

Suggested Citation

  • Spyros Arvanitis & Michael Peneder & Christian Rammer & Tobias Stucki & Martin Wörter, 2016. "How Different Policy Instruments Affect the Creation of Green Energy Innovation: A Differentiated Perspective," KOF Working papers 16-417, KOF Swiss Economic Institute, ETH Zurich.
  • Handle: RePEc:kof:wpskof:16-417
    DOI: 10.3929/ethz-a-010749040
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.3929/ethz-a-010749040
    Download Restriction: no

    File URL: https://libkey.io/10.3929/ethz-a-010749040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M. & Vance, Colin, 2010. "Economic impacts from the promotion of renewable energy technologies: The German experience," Energy Policy, Elsevier, vol. 38(8), pages 4048-4056, August.
    2. Stefan Ambec & Mark A. Cohen & Stewart Elgie & Paul Lanoie, 2013. "The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 2-22, January.
    3. Martin Woerter & Tobias Stucki, 2016. "Intra-Firm Diffusion of Green Energy Technologies and the Choice of Policy Instruments," KOF Working papers 16-401, KOF Swiss Economic Institute, ETH Zurich.
    4. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    5. Sascha Rexhäuser & Christian Rammer, 2014. "Environmental Innovations and Firm Profitability: Unmasking the Porter Hypothesis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(1), pages 145-167, January.
    6. Beise, Marian & Rennings, Klaus, 2005. "Lead markets and regulation: a framework for analyzing the international diffusion of environmental innovations," Ecological Economics, Elsevier, vol. 52(1), pages 5-17, January.
    7. Nick Johnstone & Ivan Haščič & Julie Poirier & Marion Hemar & Christian Michel, 2012. "Environmental policy stringency and technological innovation: evidence from survey data and patent counts," Applied Economics, Taylor & Francis Journals, vol. 44(17), pages 2157-2170, June.
    8. Horbach, Jens & Rammer, Christian & Rennings, Klaus, 2012. "Determinants of eco-innovations by type of environmental impact — The role of regulatory push/pull, technology push and market pull," Ecological Economics, Elsevier, vol. 78(C), pages 112-122.
    9. Adam B. Jaffe et al., 1995. "Environmental Regulation and the Competitiveness of U.S. Manufacturing: What Does the Evidence Tell Us?," Journal of Economic Literature, American Economic Association, vol. 33(1), pages 132-163, March.
    10. Angela Köppl & Margit Schratzenstaller, 2015. "Das österreichische Abgabensystem Reformperspektiven," WIFO Monatsberichte (monthly reports), WIFO, vol. 88(2), pages 127-135, February.
    11. Jens M. Arnold & Katrin Hussinger, 2010. "Exports versus FDI in German Manufacturing: Firm Performance and Participation in International Markets," Review of International Economics, Wiley Blackwell, vol. 18(4), pages 595-606, September.
    12. Cassiman, Bruno & Golovko, Elena & Martínez-Ros, Ester, 2010. "Innovation, exports and productivity," International Journal of Industrial Organization, Elsevier, vol. 28(4), pages 372-376, July.
    13. Marius Ley, Tobias Stucki, and Martin Woerter, 2016. "The Impact of Energy Prices on Green Innovation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    14. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    15. Paul Lanoie & Jérémy Laurent‐Lucchetti & Nick Johnstone & Stefan Ambec, 2011. "Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 20(3), pages 803-842, September.
    16. Nolden, Colin, 2013. "Governing community energy—Feed-in tariffs and the development of community wind energy schemes in the United Kingdom and Germany," Energy Policy, Elsevier, vol. 63(C), pages 543-552.
    17. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    18. Lipp, Judith, 2007. "Lessons for effective renewable electricity policy from Denmark, Germany and the United Kingdom," Energy Policy, Elsevier, vol. 35(11), pages 5481-5495, November.
    19. Guanglei Hong, 2010. "Marginal Mean Weighting Through Stratification: Adjustment for Selection Bias in Multilevel Data," Journal of Educational and Behavioral Statistics, , vol. 35(5), pages 499-531, October.
    20. Spyros Arvanitis & Michael Peneder & Christian Rammer & Tobias Stucki & Martin Wörter, 2016. "The adoption of green energy technologies: The role of policies in an international comparison," KOF Working papers 16-411, KOF Swiss Economic Institute, ETH Zurich.
    21. Angela Köppl & Margit Schratzenstaller, 2015. "The Austrian Tax System Status Quo," WIFO Bulletin, WIFO, vol. 20(5), pages 55-71, April.
    22. Cantner, Uwe & Graf, Holger & Herrmann, Johannes & Kalthaus, Martin, 2016. "Inventor networks in renewable energies: The influence of the policy mix in Germany," Research Policy, Elsevier, vol. 45(6), pages 1165-1184.
    23. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, Oxford University Press, vol. 114(3), pages 941-975.
    24. Shadbegian, Ronald & Wolverton, Ann, 2010. "Location Decisions of U.S. Polluting Plants: Theory, Empirical Evidence, and Consequences," International Review of Environmental and Resource Economics, now publishers, vol. 4(1), pages 1-49, June.
    25. Weyant, John P., 2011. "Accelerating the development and diffusion of new energy technologies: Beyond the "valley of death"," Energy Economics, Elsevier, vol. 33(4), pages 674-682, July.
    26. Rian Beise-Zee & Christian Rammer, 2006. "Local User-Producer Interaction in Innovation and Export Performance of Firms," Small Business Economics, Springer, vol. 27(2), pages 207-222, October.
    27. Kuckshinrichs, Wilhelm & Kronenberg, Tobias & Hansen, Patrick, 2010. "The social return on investment in the energy efficiency of buildings in Germany," Energy Policy, Elsevier, vol. 38(8), pages 4317-4329, August.
    28. Fabio Iraldo & Francesco Testa & Vlasis Oikonomou & Michela Melis & Marco Frey & Eise Spijker, 2009. "A literature review on the links between environmental regulation and competitiveness," Working Papers 200904, Scuola Superiore Sant'Anna of Pisa, Istituto di Management.
    29. Sascha Becker & Peter Egger, 2013. "Endogenous product versus process innovation and a firm’s propensity to export," Empirical Economics, Springer, vol. 44(1), pages 329-354, February.
    30. Paul Welfens & Christian Lutz, 2012. "Green ICT dynamics: key issues and findings for Germany," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 24(2), pages 155-163, June.
    31. Joshua Linn, 2008. "Energy Prices and the Adoption of Energy-Saving Technology," Economic Journal, Royal Economic Society, vol. 118(533), pages 1986-2012, November.
    32. Angela Köppl & Margit Schratzenstaller, 2015. "Das österreichische Abgabensystem Status-quo," WIFO Monatsberichte (monthly reports), WIFO, vol. 88(2), pages 109-126, February.
    33. Stefan Lachenmaier & Ludger Wößmann, 2006. "Does innovation cause exports? Evidence from exogenous innovation impulses and obstacles using German micro data," Oxford Economic Papers, Oxford University Press, vol. 58(2), pages 317-350, April.
    34. Angela Köppl & Margit Schratzenstaller, 2015. "The Austrian Tax System Perspectives for Reform," WIFO Bulletin, WIFO, vol. 20(6), pages 72-79, April.
    35. Veugelers, Reinhilde, 2012. "Which policy instruments to induce clean innovating?," Research Policy, Elsevier, vol. 41(10), pages 1770-1778.
    36. Roper, Stephen & Love, James H., 2002. "Innovation and export performance: evidence from the UK and German manufacturing plants," Research Policy, Elsevier, vol. 31(7), pages 1087-1102, September.
    37. Wakelin, Katharine, 1998. "Innovation and export behaviour at the firm level," Research Policy, Elsevier, vol. 26(7-8), pages 829-841, April.
    38. Pregger, Thomas & Nitsch, Joachim & Naegler, Tobias, 2013. "Long-term scenarios and strategies for the deployment of renewable energies in Germany," Energy Policy, Elsevier, vol. 59(C), pages 350-360.
    39. Michael Bleaney & Katharine Wakelin, 2002. "Efficiency, innovation and exports," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(1), pages 3-15, February.
    40. Kronenberg, Tobias & Kuckshinrichs, Wilhelm & Hansen, Patrick, 2012. "Macroeconomic Effects of the German Government’s Building Rehabilitation Program," MPRA Paper 38815, University Library of Munich, Germany.
    41. Lehr, Ulrike & Lutz, Christian & Edler, Dietmar, 2012. "Green jobs? Economic impacts of renewable energy in Germany," Energy Policy, Elsevier, vol. 47(C), pages 358-364.
    42. Christian Lutz & Ulrike Lehr & Philip Ulrich, 2014. "Economic Evaluation of Climate Protection Measures in Germany," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 693-705.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spyros Arvanitis & Michael Peneder & Christian Rammer & Tobias Stucki & Martin Wörter, 2016. "The adoption of green energy technologies: The role of policies in an international comparison," KOF Working papers 16-411, KOF Swiss Economic Institute, ETH Zurich.
    2. Horbach, Jens & Rammer, Christian, 2018. "Energy transition in Germany and regional spill-overs: The diffusion of renewable energy in firms," Energy Policy, Elsevier, vol. 121(C), pages 404-414.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rammer, Christian & Gottschalk, Sandra & Peneder, Michael & Wörter, Martin & Stucki, Tobias & Arvanitis, Spyros, 2017. "Does energy policy hurt international competitiveness of firms? A comparative study for Germany, Switzerland and Austria," Energy Policy, Elsevier, vol. 109(C), pages 154-180.
    2. Spyros Arvanitis & Michael Peneder & Christian Rammer & Tobias Stucki & Martin Wörter, 2016. "The adoption of green energy technologies: The role of policies in an international comparison," KOF Working papers 16-411, KOF Swiss Economic Institute, ETH Zurich.
    3. Stucki, Tobias & Woerter, Martin & Arvanitis, Spyros & Peneder, Michael & Rammer, Christian, 2018. "How different policy instruments affect green product innovation: A differentiated perspective," Energy Policy, Elsevier, vol. 114(C), pages 245-261.
    4. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    5. Spyros Arvanitis & Michael Peneder & Christian Rammer & Tobias Stucki & Martin Wörter, 2016. "Competitiveness and ecological impacts of green energy technologies: firm-level evidence for the DACH region," KOF Working papers 16-420, KOF Swiss Economic Institute, ETH Zurich.
    6. Lorena D’Agostino, 2015. "How MNEs respond to environmental regulation: integrating the Porter hypothesis and the pollution haven hypothesis," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 32(2), pages 245-269, August.
    7. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    8. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    9. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    10. de Miguel, Carlos & Pazó, Consuelo, 2017. "Environmental protection, innovation and price-setting behavior in Spanish manufacturing firms," Energy Economics, Elsevier, vol. 68(S1), pages 116-124.
    11. Antoine Dechezleprêtre & Misato Sato, 2017. "The Impacts of Environmental Regulations on Competitiveness," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 183-206.
    12. David Popp, 2019. "Environmental policy and innovation: a decade of research," CESifo Working Paper Series 7544, CESifo.
    13. Teemu Makkonen & Sari Repka, 2016. "The innovation inducement impact of environmental regulations on maritime transport: a literature review," International Journal of Innovation and Sustainable Development, Inderscience Enterprises Ltd, vol. 10(1), pages 69-86.
    14. Horbach, Jens & Rammer, Christian, 2018. "Energy transition in Germany and regional spill-overs: The diffusion of renewable energy in firms," Energy Policy, Elsevier, vol. 121(C), pages 404-414.
    15. Alessandra Colombelli & Jackie Krafft & Francesco Quatraro, 2021. "Firms’ growth, green gazelles and eco-innovation: evidence from a sample of European firms," Small Business Economics, Springer, vol. 56(4), pages 1721-1738, April.
    16. Jana Hojnik, 2017. "In Pursuit of Eco-innovation," UPP Monograph Series, University of Primorska Press, number 978-961-7023-53-4.
    17. Stucki, Tobias, 2019. "Which firms benefit from investments in green energy technologies? – The effect of energy costs," Research Policy, Elsevier, vol. 48(3), pages 546-555.
    18. Dosi, Giovanni & Grazzi, Marco & Moschella, Daniele, 2015. "Technology and costs in international competitiveness: From countries and sectors to firms," Research Policy, Elsevier, vol. 44(10), pages 1795-1814.
    19. Antonietti, Roberto & Marzucchi, Alberto, 2014. "Green tangible investment strategies and export performance: A firm-level investigation," Ecological Economics, Elsevier, vol. 108(C), pages 150-161.
    20. Chiara Franco & Giovanni Marin, 2017. "The Effect of Within-Sector, Upstream and Downstream Environmental Taxes on Innovation and Productivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 261-291, February.

    More about this item

    Keywords

    Innovation; Policy; Demand;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kof:wpskof:16-417. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/koethch.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/koethch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.