IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/5878.html
   My bibliography  Save this paper

Average and marginal returns to upper secondary schooling in Indonesia

Author

Listed:
  • Carneiro, Pedro
  • Lokshin, Michael
  • Ridao-Cano, Cristobal
  • Umapathi, Nithin

Abstract

This paper estimates average and marginal returns to schooling in Indonesia using a non-parametric selection model estimated by local instrumental variables, and data from the Indonesia Family Life Survey. The analysis finds that the return to upper secondary schooling varies widely across individual: it can be as high as 50 percent per year of schooling for those very likely to enroll in upper secondary schooling, or as low as -10 percent for those very unlikely to do so. Returns to the marginal student (14 percent) are well below those for the average student attending upper secondary schooling (27 percent).

Suggested Citation

  • Carneiro, Pedro & Lokshin, Michael & Ridao-Cano, Cristobal & Umapathi, Nithin, 2011. "Average and marginal returns to upper secondary schooling in Indonesia," Policy Research Working Paper Series 5878, The World Bank.
  • Handle: RePEc:wbk:wbrwps:5878
    as

    Download full text from publisher

    File URL: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2011/11/09/000158349_20111109162306/Rendered/PDF/WPS5878.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Willis, Robert J & Rosen, Sherwin, 1979. "Education and Self-Selection," Journal of Political Economy, University of Chicago Press, vol. 87(5), pages 7-36, October.
    2. Pedro Carneiro & James J. Heckman & Edward Vytlacil, 2010. "Evaluating Marginal Policy Changes and the Average Effect of Treatment for Individuals at the Margin," Econometrica, Econometric Society, vol. 78(1), pages 377-394, January.
    3. David Card & Thomas Lemieux, 2001. "Can Falling Supply Explain the Rising Return to College for Younger Men? A Cohort-Based Analysis," The Quarterly Journal of Economics, Oxford University Press, vol. 116(2), pages 705-746.
    4. Esther Duflo, 2001. "Schooling and Labor Market Consequences of School Construction in Indonesia: Evidence from an Unusual Policy Experiment," American Economic Review, American Economic Association, vol. 91(4), pages 795-813, September.
    5. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    6. Kling, Jeffrey R, 2001. "Interpreting Instrumental Variables Estimates of the Returns to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 358-364, July.
    7. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107016064, October.
    8. Pedro Carneiro & James J. Heckman, 2002. "The Evidence on Credit Constraints in Post--secondary Schooling," Economic Journal, Royal Economic Society, vol. 112(482), pages 705-734, October.
    9. George Psacharopoulos & Harry Anthony Patrinos, 2004. "Returns to investment in education: a further update," Education Economics, Taylor & Francis Journals, vol. 12(2), pages 111-134.
    10. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    11. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107638105, October.
    12. Carneiro, Pedro & Heckman, James J., 2003. "Human Capital Policy," IZA Discussion Papers 821, Institute of Labor Economics (IZA).
    13. Duflo, Esther, 2004. "The medium run effects of educational expansion: evidence from a large school construction program in Indonesia," Journal of Development Economics, Elsevier, vol. 74(1), pages 163-197, June.
    14. Edward Vytlacil & James J. Heckman, 2001. "Policy-Relevant Treatment Effects," American Economic Review, American Economic Association, vol. 91(2), pages 107-111, May.
    15. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    16. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    17. Card, David, 1999. "The causal effect of education on earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 30, pages 1801-1863, Elsevier.
    18. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    19. James J. Heckman, 2001. "Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel Lecture," Journal of Political Economy, University of Chicago Press, vol. 109(4), pages 673-748, August.
    20. Kane, Thomas J & Rouse, Cecilia Elena, 1995. "Labor-Market Returns to Two- and Four-Year College," American Economic Review, American Economic Association, vol. 85(3), pages 600-614, June.
    21. Lorraine Dearden & Leslie McGranahan & Leslie McGranahan & Barbara Sianesi, 2004. "Returns to Education for the Marginal Learner: Evidence from the BCS70," CEE Discussion Papers 0045, Centre for the Economics of Education, LSE.
    22. Hidehiko Ichimura & Christopher Taber, 2000. "Direct estimation of policy impacts," IFS Working Papers W00/05, Institute for Fiscal Studies.
    23. Carneiro, Pedro & Lee, Sokbae, 2010. "Trends in Quality Adjusted Skill Premia in the US, 1960-2000," CEPR Discussion Papers 8108, C.E.P.R. Discussion Papers.
    24. James J. Heckman, 2010. "Building Bridges between Structural and Program Evaluation Approaches to Evaluating Policy," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 356-398, June.
    25. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    26. Stephen V. Cameron & Christopher Taber, 2004. "Estimation of Educational Borrowing Constraints Using Returns to Schooling," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 132-182, February.
    27. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    28. James J. Heckman & Xuesong Li, 2004. "Selection bias, comparative advantage and heterogeneous returns to education: evidence from China in 2000," Pacific Economic Review, Wiley Blackwell, vol. 9(3), pages 155-171, October.
    29. Janet Currie & Enrico Moretti, 2003. "Mother's Education and the Intergenerational Transmission of Human Capital: Evidence from College Openings," The Quarterly Journal of Economics, Oxford University Press, vol. 118(4), pages 1495-1532.
    30. Heckman, James J. & Vytlacil, Edward J., 2000. "The relationship between treatment parameters within a latent variable framework," Economics Letters, Elsevier, vol. 66(1), pages 33-39, January.
    31. O. Ashenfelter & D. Card (ed.), 1999. "Handbook of Labor Economics," Handbook of Labor Economics, Elsevier, edition 1, volume 3, number 3.
    32. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107016057, October.
    33. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107674165, October.
    34. Wang, Xiaojun & Fleisher, Belton M. & Li, Haizheng & Li, Shi, 2007. "Access to Higher Education and Inequality: The Chinese Experiment," IZA Discussion Papers 2823, Institute of Labor Economics (IZA).
    35. Pedro Carneiro & Sokbae Lee, 2011. "Trends in Quality-Adjusted Skill Premia in the United States, 1960-2000," American Economic Review, American Economic Association, vol. 101(6), pages 2309-2349, October.
    36. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers CWP41/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    37. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107627314, October.
    38. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107016040, October.
    39. Bjorklund, Anders & Moffitt, Robert, 1987. "The Estimation of Wage Gains and Welfare Gains in Self-selection," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 42-49, February.
    40. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    2. Laura Schmitz, 2022. "Heterogeneous Effects of After-School Care on Child Development," Discussion Papers of DIW Berlin 2006, DIW Berlin, German Institute for Economic Research.
    3. Santiago Acerenza & Kyunghoon Ban & D'esir'e K'edagni, 2021. "Marginal Treatment Effects with Misclassified Treatment," Papers 2105.00358, arXiv.org, revised Oct 2022.
    4. Thomas Cornelissen & Christian Dustmann & Anna Raute & Uta Schönberg, 2018. "Who Benefits from Universal Child Care? Estimating Marginal Returns to Early Child Care Attendance," Journal of Political Economy, University of Chicago Press, vol. 126(6), pages 2356-2409.
    5. Olivier De Groote & Koen Declercq, 2021. "Tracking and specialization of high schools: Heterogeneous effects of school choice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 898-916, November.
    6. Xinxin Chen & Yaojiang Shi & Di Mo & James Chu & Prashant Loyalka & Scott Rozelle, 2013. "Impact of a Senior High School Tuition Relief Program on Poor Junior High School Students in Rural China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 21(3), pages 80-97, May.
    7. Gerten, Elisa & Beckmann, Michael & Kräkel, Matthias, 2022. "Information and Communication Technology, Hierarchy, and Job Design," IZA Discussion Papers 15491, Institute of Labor Economics (IZA).
    8. repec:amu:wpaper:2012-16 is not listed on IDEAS
    9. Torres Franco, Nicolás Arturo & Dávalos, Eleonora & Morales, Leonardo Fabio, 2021. "Heterogeneous Effects of Agricultural Technical Assistance in Colombia," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 53(4), pages 459-481, November.
    10. Pessino, Carola & Izquierdo, Alejandro & Vuletin, Guillermo, 2018. "Better Spending for Better Lives: How Latin America and the Caribbean Can Do More with Less," IDB Publications (Books), Inter-American Development Bank, number 9152.
    11. Nobuyoshi Kikuchi, 2017. "Marginal Returns to Schooling and Education Policy Change in Japan," ISER Discussion Paper 0996, Institute of Social and Economic Research, Osaka University.
    12. Adam, Baba & Abdulai, Awudu, 2022. "Heterogeneity in the Impact of Conservation Agriculture Practices on Farm Performance and Inorganic Fertilizer Use in Ghana," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 47(2), May.
    13. Shuxi Zeng & Fan Li & Peng Ding, 2020. "Is being an only child harmful to psychological health?: evidence from an instrumental variable analysis of China's one‐child policy," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1615-1635, October.
    14. Leonardo Fabio Morales & Christian Posso & Luz A. Flórez, 2021. "Heterogeneity in the Returns to Tertiary Education for the Disadvantage Youth: Quality vs. Quantity Analysis," Borradores de Economia 1150, Banco de la Republica de Colombia.
    15. Busse, Anna & Gathmann, Christina & Kim, Jongoh & Vonnahme, Christina, 2021. "Marginal Returns to Citizenship and Educational Performance," CEPR Discussion Papers 16636, C.E.P.R. Discussion Papers.
    16. Radchenko, Natalia, 2014. "Heterogeneity in Informal Salaried Employment: Evidence from the Egyptian Labor Market Survey," World Development, Elsevier, vol. 62(C), pages 169-188.
    17. Biewen, Martin & (neé Tapalaga), Madalina Thiele, 2020. "Early tracking, academic vs. vocational training, and the value of ‘second-chance’ options," Labour Economics, Elsevier, vol. 66(C).
    18. Martin E Andresen & Martin Huber, 2021. "Instrument-based estimation with binarised treatments: issues and tests for the exclusion restriction [Juvenile incarceration, human capital, and future crime: Evidence from randomly assigned judge," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 536-558.
    19. Nobuyoshi Kikuchi, 2017. "Marginal Returns to Schooling and Education Policy Change in Japan," ISER Discussion Paper 0996r, Institute of Social and Economic Research, Osaka University, revised Oct 2017.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    2. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    3. Takahide Yanagi, 2019. "Inference on local average treatment effects for misclassified treatment," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 938-960, September.
    4. Pedro Carneiro & Sokbae (Simon) Lee, 2005. "Ability, sorting and wage inequality," CeMMAP working papers CWP16/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Rojas, Eugenio & Sánchez, Rafael & Villena, Mauricio G., 2016. "Credit constraints in higher education in a context of unobserved heterogeneity," Economics of Education Review, Elsevier, vol. 52(C), pages 225-250.
    6. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    7. Chen, Xuan & Flores, Carlos A. & Flores-Lagunes, Alfonso, 2015. "Going Beyond LATE: Bounding Average Treatment Effects of Job Corps Training," IZA Discussion Papers 9511, Institute of Labor Economics (IZA).
    8. Kedagni, Desire, 2018. "Identifying Treatment Effects in the Presence of Confounded Types," ISU General Staff Papers 201809110700001056, Iowa State University, Department of Economics.
    9. James J. Heckman, 2010. "Building Bridges between Structural and Program Evaluation Approaches to Evaluating Policy," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 356-398, June.
    10. Committee, Nobel Prize, 2021. "Answering causal questions using observational data," Nobel Prize in Economics documents 2021-2, Nobel Prize Committee.
    11. Shoya Ishimaru, 2021. "Empirical Decomposition of the IV-OLS Gap with Heterogeneous and Nonlinear Effects," Papers 2101.04346, arXiv.org, revised Jun 2022.
    12. Tobias Klein, 2013. "College education and wages in the U.K.: estimating conditional average structural functions in nonadditive models with binary endogenous variables," Empirical Economics, Springer, vol. 44(1), pages 135-161, February.
    13. Heckman, James J. & Humphries, John Eric & Veramendi, Gregory, 2016. "Dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 191(2), pages 276-292.
    14. Ge, Suqin, 2013. "Estimating the returns to schooling: Implications from a dynamic discrete choice model," Labour Economics, Elsevier, vol. 20(C), pages 92-105.
    15. Aakvik, Arild & Salvanes, Kjell G. & Vaage, Kjell, 2003. "Measuring Heterogeneity in the Returns to Education in Norway Using Educational Reforms," IZA Discussion Papers 815, Institute of Labor Economics (IZA).
    16. P. Lovaglio & S. Verzillo, 2016. "Heterogeneous economic returns to higher education: evidence from Italy," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 791-822, March.
    17. Gaurab Aryal & Manudeep Bhuller & Fabian Lange, 2022. "Signaling and Employer Learning with Instruments," American Economic Review, American Economic Association, vol. 112(5), pages 1669-1702, May.
    18. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
    19. Dr Mohammad Rafiqul Islam & Dr Nicholas Sim, 2021. "Education and Food Consumption Patterns: Quasi-Experimental Evidence from Indonesia," Papers 2109.08124, arXiv.org.
    20. Stefan Hoderlein & Bettina Siflinger & Joachim Winter, 2015. "Identification of structural models in the presence of measurement error due to rounding in survey responses," Boston College Working Papers in Economics 869, Boston College Department of Economics.

    More about this item

    Keywords

    Education For All; Secondary Education; Teaching and Learning; Primary Education; Population Policies;
    All these keywords.

    JEL classification:

    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:5878. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.