IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/62095.html
   My bibliography  Save this paper

Credit Constraints in Higher Education in a Context of Unobserved Heterogeneity

Author

Listed:
  • Villena, Mauricio
  • Sanchez, Rafael
  • Rojas, Eugenio

Abstract

This article tests the existence of credit constraints on higher education access by estimating actual marginal returns in the context of unobserved heterogeneity. We estimate higher education returns for those who attend to it and compare them with those of individuals who are at the margin of attending to it. Following the Carneiro and Heckman (2002) reasoning, if the returns of the latter group are larger than those of the former one we could be in presence of unobservable barriers to higher education access, such as credit constraints. We use a rich administrative database composed from three sources: data of enrollment and graduation from the Chilean higher education system, test scores and labor market outcomes from the Chilean Unemployment Insurance database. Our results suggest that, given the existing financial aid scheme, the returns for those individuals that are at the margin of attending to higher education are lower than for those who decided to attend to it. This is, no evidence of credit constraints is found for the Chilean Higher Education system. However, when conditioning on family income, we find that for the richer households some evidence of credit constraints is found.

Suggested Citation

  • Villena, Mauricio & Sanchez, Rafael & Rojas, Eugenio, 2012. "Credit Constraints in Higher Education in a Context of Unobserved Heterogeneity," MPRA Paper 62095, University Library of Munich, Germany, revised 08 Jul 2014.
  • Handle: RePEc:pra:mprapa:62095
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/62095/1/MPRA_paper_62095.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thomas J. Kane, 2007. "Evaluating the Impact of the D.C. Tuition Assistance Grant Program," Journal of Human Resources, University of Wisconsin Press, vol. 42(3).
    2. Willis, Robert J & Rosen, Sherwin, 1979. "Education and Self-Selection," Journal of Political Economy, University of Chicago Press, vol. 87(5), pages 7-36, October.
    3. Stephen V. Cameron & James J. Heckman, 1998. "Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts of American Males," Journal of Political Economy, University of Chicago Press, vol. 106(2), pages 262-333, April.
    4. Lance J. Lochner & Alexander Monge-Naranjo, 2011. "The Nature of Credit Constraints and Human Capital," American Economic Review, American Economic Association, vol. 101(6), pages 2487-2529, October.
    5. Pedro Carneiro & James J. Heckman & Edward Vytlacil, 2010. "Evaluating Marginal Policy Changes and the Average Effect of Treatment for Individuals at the Margin," Econometrica, Econometric Society, vol. 78(1), pages 377-394, January.
    6. Stephen V. Cameron & Christopher Taber, 2004. "Estimation of Educational Borrowing Constraints Using Returns to Schooling," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 132-182, February.
    7. Pedro Carneiro & James J. Heckman, 2002. "The Evidence on Credit Constraints in Post--secondary Schooling," Economic Journal, Royal Economic Society, vol. 112(482), pages 705-734, October.
    8. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    9. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    10. Katja Maria Kaufmann, 2014. "Understanding the income gradient in college attendance in Mexico: The role of heterogeneity in expected returns," Quantitative Economics, Econometric Society, vol. 5(3), pages 583-630, November.
    11. David Card, 1994. "Earnings, Schooling, and Ability Revisited," Working Papers 710, Princeton University, Department of Economics, Industrial Relations Section..
    12. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    13. David Card, 1994. "Earnings, Schooling, and Ability Revisited," Working Papers 710, Princeton University, Department of Economics, Industrial Relations Section..
    14. Edward Vytlacil & James J. Heckman, 2001. "Policy-Relevant Treatment Effects," American Economic Review, American Economic Association, vol. 91(2), pages 107-111, May.
    15. Christopher R. Taber, 2001. "The Rising College Premium in the Eighties: Return to College or Return to Unobserved Ability?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(3), pages 665-691.
    16. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    17. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    18. Kane, Thomas J & Rouse, Cecilia Elena, 1995. "Labor-Market Returns to Two- and Four-Year College," American Economic Review, American Economic Association, vol. 85(3), pages 600-614, June.
    19. Stephen V. Cameron & James J. Heckman, 1998. "Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts," NBER Working Papers 6385, National Bureau of Economic Research, Inc.
    20. Tomás Rau & Eugenio Rojas & Sergio Urzúa, 2013. "Loans for Higher Education: Does the Dream Come True?," NBER Working Papers 19138, National Bureau of Economic Research, Inc.
    21. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    22. Loreto Reyes & Jorge Rodríguez & Sergio S. Urzúa, 2013. "Heterogeneous Economic Returns to Postsecondary Degrees: Evidence from Chile," NBER Working Papers 18817, National Bureau of Economic Research, Inc.
    23. repec:fth:prinin:331 is not listed on IDEAS
    24. Heckman, James J. & Robb, Richard Jr., 1985. "Alternative methods for evaluating the impact of interventions : An overview," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 239-267.
    25. Thomas J. Kane, 1996. "College Cost, Borrowing Constraints and the Timing of College Entry," Eastern Economic Journal, Eastern Economic Association, vol. 22(2), pages 181-194, Spring.
    26. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    27. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    28. Stephen V. Cameron & James J. Heckman, 2001. "The Dynamics of Educational Attainment for Black, Hispanic, and White Males," Journal of Political Economy, University of Chicago Press, vol. 109(3), pages 455-499, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    2. Pedro Carneiro & Michael Lokshin & Nithin Umapathi, 2017. "Average and Marginal Returns to Upper Secondary Schooling in Indonesia," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 16-36, January.
    3. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
    4. Ge, Suqin, 2013. "Estimating the returns to schooling: Implications from a dynamic discrete choice model," Labour Economics, Elsevier, vol. 20(C), pages 92-105.
    5. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    6. Pedro Carneiro & Sokbae (Simon) Lee, 2005. "Ability, sorting and wage inequality," CeMMAP working papers CWP16/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Cunha, Flavio & Heckman, James J. & Lochner, Lance, 2006. "Interpreting the Evidence on Life Cycle Skill Formation," Handbook of the Economics of Education, in: Erik Hanushek & F. Welch (ed.), Handbook of the Economics of Education, edition 1, volume 1, chapter 12, pages 697-812, Elsevier.
    8. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    9. Binelli, Chiara & Menezes-Filho, Naercio, 2019. "Why Brazil fell behind in college education?," Economics of Education Review, Elsevier, vol. 72(C), pages 80-106.
    10. Katja Kaufmann, 2008. "Understanding the Income Gradient in College Attendance in Mexico: The Role of Heterogeneity in Expected Returns to College," Discussion Papers 07-040, Stanford Institute for Economic Policy Research.
    11. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    12. Loreto Reyes & Jorge Rodríguez & Sergio S. Urzúa, 2013. "Heterogeneous Economic Returns to Postsecondary Degrees: Evidence from Chile," NBER Working Papers 18817, National Bureau of Economic Research, Inc.
    13. Pedro Carneiro & James J. Heckman, 2002. "The Evidence on Credit Constraints in Post--secondary Schooling," Economic Journal, Royal Economic Society, vol. 112(482), pages 705-734, October.
    14. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    15. Hideo Akabayashi & TIm Ruberg & Chizuru Shikishima & Jun Yamashita, 2023. "Education-Oriented and Care-Oriented Preschools:Implications on Child Development," Keio-IES Discussion Paper Series 2023-009, Institute for Economics Studies, Keio University.
    16. Belzil, Christian, 2007. "The return to schooling in structural dynamic models: a survey," European Economic Review, Elsevier, vol. 51(5), pages 1059-1105, July.
    17. Gaurab Aryal & Manudeep Bhuller & Fabian Lange, 2022. "Signaling and Employer Learning with Instruments," American Economic Review, American Economic Association, vol. 112(5), pages 1669-1702, May.
    18. Juergen Jung & Vinish Shrestha, 2018. "The Affordable Care Act And College Enrollment Decisions," Economic Inquiry, Western Economic Association International, vol. 56(4), pages 1980-2009, October.
    19. Biewen, Martin & (neé Tapalaga), Madalina Thiele, 2020. "Early tracking, academic vs. vocational training, and the value of ‘second-chance’ options," Labour Economics, Elsevier, vol. 66(C).
    20. Akabayashi, Hideo & Ruberg, Tim & Shikishima, Chizuru & Yamashita, Jun, 2023. "Education-oriented and care-oriented preschools: Implications on child development," Labour Economics, Elsevier, vol. 84(C).

    More about this item

    Keywords

    Higher Education; Credit Constraints; Structural Models; Marginal Treatment Effect;
    All these keywords.

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • I2 - Health, Education, and Welfare - - Education
    • I23 - Health, Education, and Welfare - - Education - - - Higher Education; Research Institutions
    • I25 - Health, Education, and Welfare - - Education - - - Education and Economic Development
    • J3 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:62095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.