IDEAS home Printed from
   My bibliography  Save this paper

Robust standard error estimators for panel models: a unifying approach


  • Millo, Giovanni


The different robust estimators for the standard errors of panel models used in applied econometric practice can all be written and computed as combinations of the same simple building blocks. A framework based on high-level wrapper functions for most common usage and basic computational elements to be combined at will, coupling user-friendliness with flexibility, is integrated in the 'plm' package for panel data econometrics in R. Statistical motivation and computational approach are reviewed, and applied examples are provided.

Suggested Citation

  • Millo, Giovanni, 2014. "Robust standard error estimators for panel models: a unifying approach," MPRA Paper 54954, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:54954

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    1. Thompson, Samuel B., 2011. "Simple formulas for standard errors that cluster by both firm and time," Journal of Financial Economics, Elsevier, vol. 99(1), pages 1-10, January.
    2. Coakley, Jerry & Fuertes, Ana-Maria & Smith, Ron, 2006. "Unobserved heterogeneity in panel time series models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2361-2380, May.
    3. Alicia H. Munnell, 1990. "Why has productivity growth declined? Productivity and public investment," New England Economic Review, Federal Reserve Bank of Boston, issue Jan, pages 3-22.
    4. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    5. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2011. "Robust Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 238-249, April.
    6. Croissant, Yves & Millo, Giovanni, 2008. "Panel Data Econometrics in R: The plm Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i02).
    7. Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011. "Weak and strong cross‐section dependence and estimation of large panels," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 45-90, February.
    8. Mitchell A. Petersen, 2009. "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 435-480, January.
    9. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    10. Alvarez, R. Michael & Garrett, Geoffrey & Lange, Peter, 1991. "Government Partisanship, Labor Organization, and Macroeconomic Performance," American Political Science Review, Cambridge University Press, vol. 85(2), pages 539-556, June.
    11. Beck, Nathaniel & Katz, Jonathan N. & Alvarez, R. Michael & Garrett, Geoffrey & Lange, Peter, 1993. "Government Partisanship, Labor Organization, and Macroeconomic Performance: A Corrigendum," American Political Science Review, Cambridge University Press, vol. 87(4), pages 945-948, December.
    12. Moulton, Brent R., 1986. "Random group effects and the precision of regression estimates," Journal of Econometrics, Elsevier, vol. 32(3), pages 385-397, August.
    13. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    14. Froot, Kenneth A., 1989. "Consistent Covariance Matrix Estimation with Cross-Sectional Dependence and Heteroskedasticity in Financial Data," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(3), pages 333-355, September.
    15. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    16. Wilson, Sven E. & Butler, Daniel M., 2007. "A Lot More to Do: The Sensitivity of Time-Series Cross-Section Analyses to Simple Alternative Specifications," Political Analysis, Cambridge University Press, vol. 15(2), pages 101-123, April.
    17. Zeileis, Achim, 2004. "Econometric Computing with HC and HAC Covariance Matrix Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i10).
    18. Arellano, M, 1987. "Computing Robust Standard Errors for Within-Groups Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 49(4), pages 431-434, November.
    19. Bailey, Delia & Katz, Jonathan N., 2011. "Implementing Panel-Corrected Standard Errors in R: The pcse Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(c01).
    20. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    21. Zeileis, Achim, 2006. "Object-oriented Computation of Sandwich Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 16(i09).
    22. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    23. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    24. Golden, M. & Picci, L., 2007. "Pork Barrel Politics in Postwar Italy, 1953–1994," Cambridge Working Papers in Economics 0767, Faculty of Economics, University of Cambridge.
    25. Moulton, Brent R, 1990. "An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Unit," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 334-338, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kivanç Halil Ariç & Siok Kun Sek & Miguel Rocha de Sousa, 2018. "Current Account Balance in Emerging Asia," CEFAGE-UE Working Papers 2018_02, University of Evora, CEFAGE-UE (Portugal).
    2. Gozgor, Giray & Mahalik, Mantu Kumar & Demir, Ender & Padhan, Hemachandra, 2020. "The impact of economic globalization on renewable energy in the OECD countries," Energy Policy, Elsevier, vol. 139(C).
    3. Susanne Berger & Nathaniel Graham & Achim Zeileis, 2017. "Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R," Working Papers 2017-12, Faculty of Economics and Statistics, University of Innsbruck.

    More about this item


    Panel data; covariance matrix estimators; R;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:54954. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.