IDEAS home Printed from https://ideas.repec.org/p/onb/oenbwp/144.html
   My bibliography  Save this paper

Dating and forecasting turning points by Bayesian clustering with dynamic structure: A suggestion with an application to Austrian data

Author

Abstract

The information contained in a large panel data set is used to date historical turning points of the Austrian business cycle and to forecast future ones. We estimate groups of series with similar time series dynamics and link the groups with a dynamic structure. The dynamic structure identifies a group of leading and a group of coincident series. Robust results across data vintages are obtained when series specific information is incorporated in the design of the prior group probability distribution. The results are consistent with common expectations, in particular the group of leading series includes Austrian confidence indicators and survey data, German survey indicators, some trade data, and, interestingly, the Austrian and the German stock market indices. The forecast evaluation confirms that the Markov switching panel with dynamic structure performs well when compared to other specifications.

Suggested Citation

  • Sylvia Kaufmann, 2008. "Dating and forecasting turning points by Bayesian clustering with dynamic structure: A suggestion with an application to Austrian data," Working Papers 144, Oesterreichische Nationalbank (Austrian Central Bank).
  • Handle: RePEc:onb:oenbwp:144
    as

    Download full text from publisher

    File URL: https://www.oenb.at/dam/jcr:49334027-4571-492a-af56-04f9ddc08c6b/wp144_tcm16-88579.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michael ARTIS & Massimiliano MARCELLINO & Tommaso PROIETTI, 2002. "Dating the Euro Area Business Cycle," Economics Working Papers ECO2002/24, European University Institute.
    2. Hoogstrate, Andre J & Palm, Franz C & Pfann, Gerard A, 2000. "Pooling in Dynamic Panel-Data Models: An Application to Forecasting GDP Growth Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 274-283, July.
    3. Giancarlo Bruno & Claudio Lupi, 2004. "Forecasting industrial production and the early detection of turning points," Empirical Economics, Springer, vol. 29(3), pages 647-671, September.
    4. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages 62-85, May.
    5. Paap, Richard & Segers, Rene & van Dijk, Dick, 2009. "Do Leading Indicators Lead Peaks More Than Troughs?," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 528-543.
    6. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    7. Harding, Don & Pagan, Adrian, 2006. "Synchronization of cycles," Journal of Econometrics, Elsevier, vol. 132(1), pages 59-79, May.
    8. Phillips, Kerk L., 1991. "A two-country model of stochastic output with changes in regime," Journal of International Economics, Elsevier, vol. 31(1-2), pages 121-142, August.
    9. Pilar Bengoechea & Gabriel Pérez Quirós, 2004. "A useful tool to identify recessions in the euro area," European Economy - Economic Papers 2008 - 2015 215, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    10. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    11. Filardo, Andrew J. & Gordon, Stephen F., 1998. "Business cycle durations," Journal of Econometrics, Elsevier, vol. 85(1), pages 99-123, July.
    12. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    13. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
    14. Michael Artis & Massimiliano Marcellino & Tommaso Proietti, 2004. "Dating Business Cycles: A Methodological Contribution with an Application to the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(4), pages 537-565, September.
    15. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 42-49, January.
    16. Canova, Fabio & Ciccarelli, Matteo, 2004. "Forecasting and turning point predictions in a Bayesian panel VAR model," Journal of Econometrics, Elsevier, vol. 120(2), pages 327-359, June.
    17. Fruhwirth-Schnatter, Sylvia & Kaufmann, Sylvia, 2008. "Model-Based Clustering of Multiple Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 78-89, January.
    18. Marcellino, Massimiliano, 2005. "Leading Indicators: What Have We Learned?," CEPR Discussion Papers 4977, C.E.P.R. Discussion Papers.
    19. Sylvia Kaufmann & Peter Kugler, 2010. "A monetary real-time conditional forecast of euro area inflation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 388-405.
    20. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    21. Harding, Don, 2008. "Detecting and forecasting business cycle turning points," MPRA Paper 33583, University Library of Munich, Germany.
    22. Sylvia Kaufmann & Sylvia Frühwirth-Schnatter, 2006. "How do changes in monetary policy affect bank lending? An analysis of Austrian bank data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 275-305.
    23. Dick van Dijk & Dennis Fok & Philip Hans Franses, 2005. "A multi-level panel STAR model for US manufacturing sectors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(6), pages 811-827.
    24. Don Harding & Adrian Pagan, 2006. "The Econometric Analysis of Constructed Binary Time Series," Department of Economics - Working Papers Series 963, The University of Melbourne.
    25. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Interactions between eurozone and US booms and busts: A Bayesian panel Markov-switching VAR model," Working Papers 2013:17, Department of Economics, University of Venice "Ca' Foscari", revised 2014.
    2. Sylvia Kaufmann, 2014. "K-state switching models with time-varying transition distributions – Does credit growth signal stronger effects of variables on inflation?," Working Papers 14.04, Swiss National Bank, Study Center Gerzensee.
    3. Neville Francis & Michael T. Owyang & Ozge Savascin, 2017. "An endogenously clustered factor approach to international business cycles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1261-1276, November.
    4. Roberto Casarin & Komla Mawulom Agudze & Monica Billio & Eric Girardin, 2014. "Growth-cycle phases in China�s provinces: A panel Markov-switching approach," Working Papers 2014:19, Department of Economics, University of Venice "Ca' Foscari".
    5. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    6. Kaufmann, Sylvia, 2015. "K-state switching models with time-varying transition distributions—Does loan growth signal stronger effects of variables on inflation?," Journal of Econometrics, Elsevier, vol. 187(1), pages 82-94.
    7. Hernández-Murillo, Rubén & Owyang, Michael T. & Rubio, Margarita, 2017. "Clustered housing cycles," Regional Science and Urban Economics, Elsevier, vol. 66(C), pages 185-197.
    8. Roberto Casarin & Claudia Foroni & Massimiliano Marcellino & Francesco Ravazzolo, 2016. "Uncertainty Through the Lenses of A Mixed-Frequency Bayesian Panel Markov Switching Model," Working Papers 585, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    9. Adrian Pagan & Don Harding, 2011. "Econometric Analysis and Prediction of Recurrent Events," NCER Working Paper Series 75, National Centre for Econometric Research.
    10. James D. Hamilton & Michael T. Owyang, 2012. "The Propagation of Regional Recessions," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 935-947, November.
    11. Dolores Gadea-Rivas, M. & Gómez-Loscos, Ana & Bandrés, Eduardo, 2018. "Clustering regional business cycles," Economics Letters, Elsevier, vol. 162(C), pages 171-176.
    12. Ana Gómez-Loscos & M. Dolores Gadea & Eduardo Bandres, 2020. "Business cycle patterns in European regions," Empirical Economics, Springer, vol. 59(6), pages 2639-2661, December.
    13. Sylvia Kaufmann, 2011. "K-state switching models with endogenous transition distributions," Working Papers 2011-13, Swiss National Bank.
    14. Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".
    15. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    16. Antonio Pacifico, 2019. "Structural Panel Bayesian VAR Model to Deal with Model Misspecification and Unobserved Heterogeneity Problems," Econometrics, MDPI, Open Access Journal, vol. 7(1), pages 1-24, March.
    17. Michael T. Owyang & Jeremy M. Piger & Daniel Soques, 2019. "Contagious Switching," Working Papers 2019-14, Federal Reserve Bank of St. Louis.
    18. Sylvia Kaufmann, 2016. "Hidden Markov models in time series, with applications in economics," Working Papers 16.06, Swiss National Bank, Study Center Gerzensee.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:onb:oenbwp:y::i:144:b:1 is not listed on IDEAS
    2. Sylvia Kaufmann, 2016. "Hidden Markov models in time series, with applications in economics," Working Papers 16.06, Swiss National Bank, Study Center Gerzensee.
    3. Olivier Darné & Laurent Ferrara, 2011. "Identification of Slowdowns and Accelerations for the Euro Area Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(3), pages 335-364, June.
    4. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Interactions between Eurozone and US Booms and Busts: A Bayesian Panel Markov-switching VAR Model," Tinbergen Institute Discussion Papers 13-142/III, Tinbergen Institute, revised 01 Nov 2014.
    5. Leiva-Leon, Danilo, 2013. "A New Approach to Infer Changes in the Synchronization of Business Cycle Phases," MPRA Paper 54452, University Library of Munich, Germany.
    6. Roberto Casarin & Komla Mawulom Agudze & Monica Billio & Eric Girardin, 2014. "Growth-cycle phases in China�s provinces: A panel Markov-switching approach," Working Papers 2014:19, Department of Economics, University of Venice "Ca' Foscari".
    7. Sonia de Lucas Santos & M. Jesús Delgado Rodríguez & Inmaculada Álvarez Ayuso & José Luis Cendejas Bueno, 2011. "Los ciclos económicos internacionales: antecedentes y revisión de la literatura," Cuadernos de Economía - Spanish Journal of Economics and Finance, Asociación Cuadernos de Economía, vol. 34(95), pages 73-84, Agosto.
    8. Danilo Leiva-Leon, 2017. "Measuring Business Cycles Intra-Synchronization in US: A Regime-switching Interdependence Framework," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 513-545, August.
    9. Peter M. Summers & Penelope A. Smith, 2005. "How well do Markov switching models describe actual business cycles? The case of synchronization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 253-274.
    10. Andrea Carriero & Massimiliano Marcellino, 2011. "Sectoral Survey‐based Confidence Indicators for Europe," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(2), pages 175-206, April.
    11. Louise Holm, 2016. "The Swedish business cycle, 1969-2013," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2015(2), pages 1-22.
    12. Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
    13. Thierry Aimar & Francis Bismans & Claude Diebolt, 2010. "Le cycle économique : une synthèse," Revue Française d'Économie, Programme National Persée, vol. 24(4), pages 3-65.
    14. James D. Hamilton & Michael T. Owyang, 2012. "The Propagation of Regional Recessions," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 935-947, November.
    15. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    16. Yong Song & Tomasz Wo'zniak, 2020. "Markov Switching," Papers 2002.03598, arXiv.org.
    17. Hamilton, J.D., 2016. "Macroeconomic Regimes and Regime Shifts," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 163-201, Elsevier.
    18. Don Harding & Adrian Pagan, 2006. "Measurement of Business Cycles," Department of Economics - Working Papers Series 966, The University of Melbourne.
    19. Andrea Carriero & Massimiliano Marcellino, 2007. "Monitoring the Economy of the Euro Area: A Comparison of Composite Coincident Indexes," Working Papers 319, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    20. Monica Billio & Jacques Anas & Laurent Ferrara & Marco Lo Duca, 2007. "A turning point chronology for the Euro-zone," Working Papers 2007_33, Department of Economics, University of Venice "Ca' Foscari".
    21. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.

    More about this item

    Keywords

    Bayesian clustering; parameter heterogeneity; latent dynamic structure; Markov switching; panel data; turning points.;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:onb:oenbwp:144. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Markus Knell and Helmut Stix). General contact details of provider: http://edirc.repec.org/data/oenbbat.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.