IDEAS home Printed from https://ideas.repec.org/p/onb/oenbwp/144.html
   My bibliography  Save this paper

Dating and forecasting turning points by Bayesian clustering with dynamic structure: A suggestion with an application to Austrian data

Author

Abstract

The information contained in a large panel data set is used to date historical turning points of the Austrian business cycle and to forecast future ones. We estimate groups of series with similar time series dynamics and link the groups with a dynamic structure. The dynamic structure identifies a group of leading and a group of coincident series. Robust results across data vintages are obtained when series specific information is incorporated in the design of the prior group probability distribution. The results are consistent with common expectations, in particular the group of leading series includes Austrian confidence indicators and survey data, German survey indicators, some trade data, and, interestingly, the Austrian and the German stock market indices. The forecast evaluation confirms that the Markov switching panel with dynamic structure performs well when compared to other specifications.

Suggested Citation

  • Sylvia Kaufmann, 2008. "Dating and forecasting turning points by Bayesian clustering with dynamic structure: A suggestion with an application to Austrian data," Working Papers 144, Oesterreichische Nationalbank (Austrian Central Bank).
  • Handle: RePEc:onb:oenbwp:144
    as

    Download full text from publisher

    File URL: https://www.oenb.at/dam/jcr:49334027-4571-492a-af56-04f9ddc08c6b/wp144_tcm16-88579.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Marcellino, Massimiliano, 2005. "Leading Indicators: What Have We Learned?," CEPR Discussion Papers 4977, C.E.P.R. Discussion Papers.
    2. Sylvia Kaufmann & Peter Kugler, 2010. "A monetary real-time conditional forecast of euro area inflation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 388-405.
    3. Hoogstrate, Andre J & Palm, Franz C & Pfann, Gerard A, 2000. "Pooling in Dynamic Panel-Data Models: An Application to Forecasting GDP Growth Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 274-283, July.
    4. Giancarlo Bruno & Claudio Lupi, 2004. "Forecasting industrial production and the early detection of turning points," Empirical Economics, Springer, vol. 29(3), pages 647-671, September.
    5. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages 62-85, May.
    6. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    7. Paap, Richard & Segers, Rene & van Dijk, Dick, 2009. "Do Leading Indicators Lead Peaks More Than Troughs?," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 528-543.
    8. Sylvia Kaufmann & Sylvia Frühwirth-Schnatter, 2006. "How do changes in monetary policy affect bank lending? An analysis of Austrian bank data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 275-305.
    9. Pilar Bengoechea & Gabriel Pérez-Quirós, 2004. "A useful tool to identify recessions in the euro-area," Working Papers 0419, Banco de España;Working Papers Homepage.
    10. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    11. Dick van Dijk & Dennis Fok & Philip Hans Franses, 2005. "A multi-level panel STAR model for US manufacturing sectors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(6), pages 811-827.
    12. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    13. Harding, Don & Pagan, Adrian, 2006. "Synchronization of cycles," Journal of Econometrics, Elsevier, vol. 132(1), pages 59-79, May.
    14. Filardo, Andrew J. & Gordon, Stephen F., 1998. "Business cycle durations," Journal of Econometrics, Elsevier, vol. 85(1), pages 99-123, July.
    15. Phillips, Kerk L., 1991. "A two-country model of stochastic output with changes in regime," Journal of International Economics, Elsevier, vol. 31(1-2), pages 121-142, August.
    16. Canova, Fabio & Ciccarelli, Matteo, 2004. "Forecasting and turning point predictions in a Bayesian panel VAR model," Journal of Econometrics, Elsevier, vol. 120(2), pages 327-359, June.
    17. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 42-49, January.
    18. Fruhwirth-Schnatter, Sylvia & Kaufmann, Sylvia, 2008. "Model-Based Clustering of Multiple Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 78-89, January.
    19. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    20. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francis, Neville & Owyang, Michael T. & Savascin, Özge, 2012. "An endogenously clustered factor approach to international business cycles," Working Papers 2012-014, Federal Reserve Bank of St. Louis, revised 10 Feb 2017.
    2. James D. Hamilton & Michael T. Owyang, 2012. "The Propagation of Regional Recessions," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 935-947, November.
    3. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.

    More about this item

    Keywords

    Bayesian clustering; parameter heterogeneity; latent dynamic structure; Markov switching; panel data; turning points.;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:onb:oenbwp:144. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Markus Knell and Helmut Stix). General contact details of provider: http://edirc.repec.org/data/oenbbat.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.