IDEAS home Printed from
   My bibliography  Save this paper

Leading Indicators: What Have We Learned?


  • Marcellino, Massimiliano


We provide a summary updated guide for the construction, use and evaluation of leading indicators, and an assessment of the most relevant recent developments in this field of economic forecasting. To begin with, we analyse the problem of selecting a target coincident variable for the leading indicators, which requires coincident indicator selection, construction of composite coincident indexes, choice of filtering methods, and business cycle dating procedures to transform the continuous target into a binary expansion/recession indicator. Next, we deal with criteria for choosing good leading indicators, and simple non-model based methods to combine them into composite indexes. Then, we examine models and methods to transform the leading indicators into forecasts of the target variable. Finally, we consider the evaluation of the resulting leading indicator based forecasts, and review the recent literature on the forecasting performance of leading indicators.

Suggested Citation

  • Marcellino, Massimiliano, 2005. "Leading Indicators: What Have We Learned?," CEPR Discussion Papers 4977, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:4977

    Download full text from publisher

    File URL:
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Weiss, Andrew A., 1991. "Multi-step estimation and forecasting in dynamic models," Journal of Econometrics, Elsevier, vol. 48(1-2), pages 135-149.
    2. Guillaume Chevillon, 2007. "Direct Multi-Step Estimation And Forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 746-785, September.
    3. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    4. Chevillon, Guillaume & Hendry, David F., 2005. "Non-parametric direct multi-step estimation for forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 21(2), pages 201-218.
    5. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    6. Clements, Michael P & Hendry, David F, 1996. "Multi-step Estimation for Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 657-684, November.
    7. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    8. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    9. R. Bhansali, 1996. "Asymptotically efficient autoregressive model selection for multistep prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 577-602, September.
    10. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    11. Margaret M. McConnell & Gabriel Perez-Quiros, 2000. "Output fluctuations in the United States: what has changed since the early 1980s?," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    12. Kang, In-Bong, 2003. "Multi-period forecasting using different models for different horizons: an application to U.S. economic time series data," International Journal of Forecasting, Elsevier, vol. 19(3), pages 387-400.
    13. Schwert, G. William, 1987. "Effects of model specification on tests for unit roots in macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 20(1), pages 73-103, July.
    14. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    15. Schorfheide, Frank, 2005. "VAR forecasting under misspecification," Journal of Econometrics, Elsevier, vol. 128(1), pages 99-136, September.
    16. Ing, Ching-Kang, 2003. "Multistep Prediction In Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 19(02), pages 254-279, April.
    17. Flint Brayton & John M. Roberts & John C. Williams, 1999. "What's happened to the Phillips curve?," Finance and Economics Discussion Series 1999-49, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ard den Reijer, 2006. "The Dutch business cycle: which indicators should we monitor?," DNB Working Papers 100, Netherlands Central Bank, Research Department.
    2. Allen, P. Geoffrey & Morzuch, Bernard J., 2006. "Twenty-five years of progress, problems, and conflicting evidence in econometric forecasting. What about the next 25 years?," International Journal of Forecasting, Elsevier, vol. 22(3), pages 475-492.
    3. Mohsin S. Khan & Axel Schimmelpfennig, 2006. "Inflation in Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 45(2), pages 185-202.
    4. Aiolfi, Marco & Catão, Luis A.V. & Timmermann, Allan, 2011. "Common factors in Latin America's business cycles," Journal of Development Economics, Elsevier, vol. 95(2), pages 212-228, July.
    5. Maria Antoinette Silgoner, 2005. "An Overview of European Economic Indicators: Great Variety of Data on the Euro Area, Need for More Extensive Coverage of the New EU Member States," Monetary Policy & the Economy, Oesterreichische Nationalbank (Austrian Central Bank), issue 3, pages 66-89.
    6. Matta Samer, 2015. "New Coincident and Leading Indexes for the Lebanese Economy," Review of Middle East Economics and Finance, De Gruyter, vol. 11(3), pages 277-303, December.
    7. Sylvia Kaufmann, 2010. "Dating and forecasting turning points by Bayesian clustering with dynamic structure: a suggestion with an application to Austrian data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 309-344.
    8. Croce, Roberto M. & Haurin, Donald R., 2009. "Predicting turning points in the housing market," Journal of Housing Economics, Elsevier, vol. 18(4), pages 281-293, December.
    9. De Bandt. O. & Bruneau, C. & Flageollet, B., 2006. "Assessing Aggregate Comovements in France, Germany and Italy. Using a Non Stationary Factor Model of the Euro Area," Working papers 145, Banque de France.
    10. Vladimir Dubrovskiy & Inna Golodniuk & Janusz Szyrmer, 2009. "Composite Leading Indicators for Ukraine: An Early Warning Model," CASE Network Reports 0085, CASE-Center for Social and Economic Research.
    11. Idrovo Aguirre, Byron, 2007. "Los Ciclos del Mercado Inmobiliario y su Relación con los Ciclos de la Economía
      [Housing Market Fluctuations and the Economic Cycles]
      ," MPRA Paper 19365, University Library of Munich, Germany, revised 24 Sep 2007.
    12. Muriel Nguiffo-Boyom, 2008. "A monthly indicator of Economic activity for Luxembourg," BCL working papers 31, Central Bank of Luxembourg.

    More about this item


    business cycles; coincident indicators; forecasting; leading indicators; turning points;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:4977. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.