IDEAS home Printed from
   My bibliography  Save this paper

An endogenously clustered factor approach to international business cycles




Factor models have become useful tools for studying international business cycles. Block factor models [e.g., Kose, Otrok, and Whiteman (2003)] can be especially useful as the zero restrictions on the loadings of some factors may provide some economic interpretation of the factors. These models, however, require the econometrician to predefine the blocks, leading to potential misspecification. In Monte Carlo experiments, we show that even small misspecifica- tion can lead to substantial declines in t. We propose an alternative model in which the blocks are chosen endogenously. The model is estimated in a Bayesian framework using a hierarchi- cal prior, which allows us to incorporate series-level covariates that may influence and explain how the series are grouped. Using similar international business cycle data as Kose, Otrok, and Whiteman, we find our country clusters differ in important ways from those identified by geography alone. In particular, we find that similarities in institutions (e.g., legal systems, language diversity) may be just as important as physical proximity for analyzing business cycle comovements.

Suggested Citation

  • Francis, Neville & Owyang, Michael T. & Savascin, Özge, 2012. "An endogenously clustered factor approach to international business cycles," Working Papers 2012-014, Federal Reserve Bank of St. Louis, revised 10 Feb 2017.
  • Handle: RePEc:fip:fedlwp:2012-014

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    2. Baxter, Marianne & Kouparitsas, Michael A., 2005. "Determinants of business cycle comovement: a robust analysis," Journal of Monetary Economics, Elsevier, vol. 52(1), pages 113-157, January.
    3. Chib, Siddhartha, 1993. "Bayes regression with autoregressive errors : A Gibbs sampling approach," Journal of Econometrics, Elsevier, vol. 58(3), pages 275-294, August.
    4. Emanuel Moench & Serena Ng & Simon Potter, 2013. "Dynamic Hierarchical Factor Model," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1811-1817, December.
    5. Sylvia Kaufmann, 2010. "Dating and forecasting turning points by Bayesian clustering with dynamic structure: a suggestion with an application to Austrian data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 309-344.
    6. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    7. James D. Hamilton & Michael T. Owyang, 2012. "The Propagation of Regional Recessions," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 935-947, November.
    8. Natalia Ponomareva & Hajime Katayama, 2010. "Does the version of the Penn World Tables matter? An analysis of the relationship between growth and volatility," Canadian Journal of Economics, Canadian Economics Association, vol. 43(1), pages 152-179, February.
    9. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    10. Fruhwirth-Schnatter, Sylvia & Kaufmann, Sylvia, 2008. "Model-Based Clustering of Multiple Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 78-89, January.
    11. Clark, Todd E. & van Wincoop, Eric, 2001. "Borders and business cycles," Journal of International Economics, Elsevier, vol. 55(1), pages 59-85, October.
    12. Ayhan Kose, M. & Otrok, Christopher & Whiteman, Charles H., 2008. "Understanding the evolution of world business cycles," Journal of International Economics, Elsevier, vol. 75(1), pages 110-130, May.
    13. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
    14. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 369-380, October.
    15. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    16. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 393-395, October.
    17. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Berger, Tino & Wortmann, Marcus, 2018. "Global vs. group-specific business cycles: The importance of defining the groups," Center for European, Governance and Economic Development Research Discussion Papers 334, University of Goettingen, Department of Economics.
    2. Kocsis, Zalan & Monostori, Zoltan, 2016. "The role of country-specific fundamentals in sovereign CDS spreads: Eastern European experiences," Emerging Markets Review, Elsevier, vol. 27(C), pages 140-168.

    More about this item


    Business cycles; Economic conditions;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:2012-014. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kathy Cosgrove). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.