IDEAS home Printed from https://ideas.repec.org/p/nzb/nzbdps/2015-02.html
   My bibliography  Save this paper

Structural VARs, deterministic and stochastic trends: Does detrending matter?

Author

Listed:

Abstract

We highlight how detrending within Structural Vector Autoregressions (SVAR) is directly linked to the shock identification. Consequences of trend misspecification are investigated using a prototypical Real Business Cycle model as the Data Generating Process. Decomposing the different sources of biases in the estimated impulse response functions, we find the biases arising directly from trend misspecification are not trivial when compared to other widely studied misspecifications. Misspecifying the trend can also distort impulse response functions of even the correctly detrended variable within the SVAR system. A possible solution hinted by our analysis is that increasing the lag order when estimating the SVAR may mitigate some of the biases associated with trend misspecification.

Suggested Citation

  • Benjamin Wong & Varang Wiriyawit, 2015. "Structural VARs, deterministic and stochastic trends: Does detrending matter?," Reserve Bank of New Zealand Discussion Paper Series DP2015/02, Reserve Bank of New Zealand.
  • Handle: RePEc:nzb:nzbdps:2015/02
    as

    Download full text from publisher

    File URL: http://rbnz.govt.nz/-/media/ReserveBank/Files/Publications/Discussion%20papers/2015/dp15-02.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
    2. Fabio Canova & Filippo Ferroni, 2011. "Multiple filtering devices for the estimation of cyclical DSGE models," Quantitative Economics, Econometric Society, vol. 2(1), pages 73-98, March.
    3. Hansen, Gary D., 1985. "Indivisible labor and the business cycle," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 309-327, November.
    4. Ravenna, Federico, 2007. "Vector autoregressions and reduced form representations of DSGE models," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2048-2064, October.
    5. Pagan, A.R. & Pesaran, M. Hashem, 2008. "Econometric analysis of structural systems with permanent and transitory shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3376-3395, October.
    6. Martin Fukač & Adrian Pagan, 2010. "Limited information estimation and evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 55-70, January.
    7. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
    8. Peersman, Gert & Van Robays, Ine, 2012. "Cross-country differences in the effects of oil shocks," Energy Economics, Elsevier, vol. 34(5), pages 1532-1547.
    9. Christopher J. Erceg & Luca Guerrieri & Christopher Gust, 2005. "Can Long-Run Restrictions Identify Technology Shocks?," Journal of the European Economic Association, MIT Press, vol. 3(6), pages 1237-1278, December.
    10. Leu, Shawn Chen-Yu, 2011. "A New Keynesian SVAR model of the Australian economy," Economic Modelling, Elsevier, vol. 28(1), pages 157-168.
    11. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    12. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    13. Kato, Ryuta Ray & Miyamoto, Hiroaki, 2013. "Fiscal stimulus and labor market dynamics in Japan," Journal of the Japanese and International Economies, Elsevier, vol. 30(C), pages 33-58.
    14. Cogley, Timothy & Nason, James M., 1995. "Effects of the Hodrick-Prescott filter on trend and difference stationary time series Implications for business cycle research," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 253-278.
    15. Cover, James P. & Mallick, Sushanta K., 2012. "Identifying sources of macroeconomic and exchange rate fluctuations in the UK," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1627-1648.
    16. Finlay, Richard & Jääskelä, Jarkko P., 2014. "Credit supply shocks and the global financial crisis in three small open economies," Journal of Macroeconomics, Elsevier, vol. 40(C), pages 270-276.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elekdag, Selim & Han, Fei, 2015. "What drives credit growth in emerging Asia?," Journal of Asian Economics, Elsevier, vol. 38(C), pages 1-13.
    2. Giovanni Caggiano & Efrem Castelnuovo & Gabriela Nodari, 2020. "Uncertainty and monetary policy in good and bad times: A Replication of the VAR investigation by Bloom (2009)," CAMA Working Papers 2020-74, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    2. Yao, Wenying & Kam, Timothy & Vahid, Farshid, 2017. "On weak identification in structural VARMA models," Economics Letters, Elsevier, vol. 156(C), pages 1-6.
    3. Charles, Amélie & Darné, Olivier & Tripier, Fabien, 2015. "Are Unit Root Tests Useful In The Debate Over The (Non)Stationarity Of Hours Worked?," Macroeconomic Dynamics, Cambridge University Press, vol. 19(1), pages 167-188, January.
    4. Peter Ireland & Scott Schuh, 2008. "Productivity and U.S. Macroeconomic Performance: Interpreting the Past and Predicting the Future with a Two-Sector Real Business Cycle Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(3), pages 473-492, July.
    5. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    6. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    7. Chaudourne, Jeremy & Fève, Patrick & Guay, Alain, 2014. "Understanding the effect of technology shocks in SVARs with long-run restrictions," Journal of Economic Dynamics and Control, Elsevier, vol. 41(C), pages 154-172.
    8. Peter N. Ireland, 2009. "On the Welfare Cost of Inflation and the Recent Behavior of Money Demand," American Economic Review, American Economic Association, vol. 99(3), pages 1040-1052, June.
    9. Nikolay Gospodinov & Alex Maynard & Elena Pesavento, 2011. "Sensitivity of Impulse Responses to Small Low-Frequency Comovements: Reconciling the Evidence on the Effects of Technology Shocks," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 455-467, October.
    10. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    11. Marcos Sanso-Navarro, 2011. "Broken trend stationarity of hours worked," Post-Print hal-00712742, HAL.
    12. Cantore, Cristiano & Ferroni, Filippo & León-Ledesma, Miguel A., 2017. "The dynamics of hours worked and technology," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 67-82.
    13. Ríos-Rull, José-Víctor & Santaeulàlia-Llopis, Raül, 2010. "Redistributive shocks and productivity shocks," Journal of Monetary Economics, Elsevier, vol. 57(8), pages 931-948, November.
    14. Lindé, Jesper, 2009. "The effects of permanent technology shocks on hours: Can the RBC-model fit the VAR evidence?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 597-613, March.
    15. Sean Holly & Ivan Petrella, 2008. "Factor demand linkages and the business cycle: interpreting aggregate fluctuations as sectoral fluctuations," CDMA Conference Paper Series 0809, Centre for Dynamic Macroeconomic Analysis.
    16. Hikaru Saijo, 2019. "Technology Shocks and Hours Revisited: Evidence from Household Data," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 31, pages 347-362, January.
    17. Kascha, Christian & Mertens, Karel, 2009. "Business cycle analysis and VARMA models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 267-282, February.
    18. Mandelman, Federico S. & Zanetti, Francesco, 2014. "Flexible prices, labor market frictions and the response of employment to technology shocks," Labour Economics, Elsevier, vol. 26(C), pages 94-102.
    19. Giuli, Francesco & Tancioni, Massimiliano, 2012. "Real rigidities, productivity improvements and investment dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 100-118.
    20. Soccorsi, Stefano, 2016. "Measuring nonfundamentalness for structural VARs," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 86-101.

    More about this item

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nzb:nzbdps:2015/02. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/rbngvnz.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Reserve Bank of New Zealand Knowledge Centre (email available below). General contact details of provider: https://edirc.repec.org/data/rbngvnz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.