IDEAS home Printed from https://ideas.repec.org/p/acb/cbeeco/2014-615.html
   My bibliography  Save this paper

Trend Mis-specifications and Estimated Policy Implications in DSGE Models

Author

Listed:
  • Varang Wiriyawit

Abstract

Extracting a trend component from nonstationary data is one of the first challenges in estimating a DSGE model. The misspecification of the component can distort structural parameter estimates and translate into a bias in policy-relevant statistic estimates. This paper investigates how important this bias is to estimated policy implications within a DSGE framework. The quantitative results suggest the bias in parameter estimates due to trend misspecification can result in significant inaccuracies in estimating statistics of interest. This then misleads policy conclusions. Particularly, a misspecified model is estimated using a deterministic-trend specification when the true process is a random-walk with drift.

Suggested Citation

  • Varang Wiriyawit, 2014. "Trend Mis-specifications and Estimated Policy Implications in DSGE Models," ANU Working Papers in Economics and Econometrics 2014-615, Australian National University, College of Business and Economics, School of Economics.
  • Handle: RePEc:acb:cbeeco:2014-615
    as

    Download full text from publisher

    File URL: https://www.cbe.anu.edu.au/researchpapers/econ/wp615.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frank Schorfheide, 2011. "Estimation and evaluation of DSGE models: progress and challenges," Working Papers 11-7, Federal Reserve Bank of Philadelphia.
    2. Fabio Canova & Filippo Ferroni, 2011. "Multiple filtering devices for the estimation of cyclical DSGE models," Quantitative Economics, Econometric Society, vol. 2(1), pages 73-98, March.
    3. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
    4. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 115(1), pages 147-180.
    5. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    6. Rudebusch, Glenn D, 1992. "Trends and Random Walks in Macroeconomic Time Series: A Re-examination," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(3), pages 661-680, August.
    7. Kim, Jinill, 2000. "Constructing and estimating a realistic optimizing model of monetary policy," Journal of Monetary Economics, Elsevier, vol. 45(2), pages 329-359, April.
    8. Peter N. Ireland, 2004. "Technology Shocks in the New Keynesian Model," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 923-936, November.
    9. Paustian Matthias, 2007. "Assessing Sign Restrictions," The B.E. Journal of Macroeconomics, De Gruyter, vol. 7(1), pages 1-33, August.
    10. John P. Judd & Glenn D. Rudebusch, 1998. "Taylor's rule and the Fed, 1970-1997," Economic Review, Federal Reserve Bank of San Francisco, pages 3-16.
    11. Ivana Komunjer & Serena Ng, 2011. "Dynamic Identification of Dynamic Stochastic General Equilibrium Models," Econometrica, Econometric Society, vol. 79(6), pages 1995-2032, November.
    12. Ali Dib, 2003. "An estimated Canadian DSGE model with nominal and real rigidities," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(4), pages 949-972, November.
    13. Martin Fukac & Adrian Pagan, 2010. "Limited information estimation and evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 55-70.
    14. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2007. "Assessing Structural VARs," NBER Chapters, in: NBER Macroeconomics Annual 2006, Volume 21, pages 1-106, National Bureau of Economic Research, Inc.
    15. Yongsung Chang & Taeyoung Doh & Frank Schorfheide, 2007. "Non-stationary Hours in a DSGE Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1357-1373, September.
    16. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
    17. Gorodnichenko, Yuriy & Ng, Serena, 2010. "Estimation of DSGE models when the data are persistent," Journal of Monetary Economics, Elsevier, vol. 57(3), pages 325-340, April.
    18. Marco Del Negro & Frank Schorfheide & Frank Smets & Raf Wouters, 2004. "On the fit and forecasting performance of New Keynesian models," FRB Atlanta Working Paper 2004-37, Federal Reserve Bank of Atlanta.
    19. Michael P. Clements & David F.Hendry, 2001. "Forecasting with difference-stationary and trend-stationary models," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-19.
    20. Cogley, Timothy, 2001. "Estimating and testing rational expectations models when the trend specification is uncertain," Journal of Economic Dynamics and Control, Elsevier, vol. 25(10), pages 1485-1525, October.
    21. Stock, James H., 1991. "Confidence intervals for the largest autoregressive root in U.S. macroeconomic time series," Journal of Monetary Economics, Elsevier, vol. 28(3), pages 435-459, December.
    22. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    23. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wiriyawit Varang & Wong Benjamin, 2016. "Structural VARs, deterministic and stochastic trends: how much detrending matters for shock identification," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 141-157, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gorodnichenko, Yuriy & Ng, Serena, 2010. "Estimation of DSGE models when the data are persistent," Journal of Monetary Economics, Elsevier, vol. 57(3), pages 325-340, April.
    2. Canova, Fabio, 2014. "Bridging DSGE models and the raw data," Journal of Monetary Economics, Elsevier, vol. 67(C), pages 1-15.
    3. Ferroni Filippo, 2011. "Trend Agnostic One-Step Estimation of DSGE Models," The B.E. Journal of Macroeconomics, De Gruyter, vol. 11(1), pages 1-36, July.
    4. Adnan Haider Bukhari & Safdar Ullah Khan, 2008. "A Small Open Economy DSGE Model for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(4), pages 963-1008.
    5. Marco Del Negro & Frank Schorfheide, 2009. "Monetary Policy Analysis with Potentially Misspecified Models," American Economic Review, American Economic Association, vol. 99(4), pages 1415-1450, September.
    6. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Canova, Fabio & Paustian, Matthias, 2011. "Business cycle measurement with some theory," Journal of Monetary Economics, Elsevier, vol. 58(4), pages 345-361.
    8. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    9. Inoue, Atsushi & Kuo, Chun-Hung & Rossi, Barbara, 2020. "Identifying the sources of model misspecification," Journal of Monetary Economics, Elsevier, vol. 110(C), pages 1-18.
    10. Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
    11. Daniel O. Beltran & David Draper, 2018. "Estimating dynamic macroeconomic models: how informative are the data?," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(2), pages 501-520, February.
    12. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    13. Juan F. Rubio-Ramirez & Jesus Fernández-Villaverde, 2005. "Estimating dynamic equilibrium economies: linear versus nonlinear likelihood," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 891-910.
    14. Giovanni Di Bartolomeo & Marco Di Pietro, 2017. "Intrinsic Persistence of Wage Inflation in New Keynesian Models of the Business Cycles," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(6), pages 1161-1195, September.
    15. Andrea Tambalotti & Andrea Ferrero & Vasco Curdia, 2010. "Evaluating Interest Rate Rules in an Estimated DSGE Model," 2010 Meeting Papers 402, Society for Economic Dynamics.
    16. Galvão, Ana Beatriz & Giraitis, Liudas & Kapetanios, George & Petrova, Katerina, 2016. "A time varying DSGE model with financial frictions," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 690-716.
    17. Alessia Paccagnini, 2012. "Comparing Hybrid DSGE Models," Working Papers 228, University of Milano-Bicocca, Department of Economics, revised Dec 2012.
    18. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
    19. Fabio Canova & Filippo Ferroni, 2011. "Multiple filtering devices for the estimation of cyclical DSGE models," Quantitative Economics, Econometric Society, vol. 2(1), pages 73-98, March.
    20. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers 21/13, Institute for Fiscal Studies.

    More about this item

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:acb:cbeeco:2014-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/feanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.