IDEAS home Printed from https://ideas.repec.org/p/net/wpaper/0816.html
   My bibliography  Save this paper

A Dynamic Model of Sponsored Search Advertising

Author

Abstract

Sponsored search advertising is ascendant---Jupiter Research reports expenditures rose 28% in 2007 to $8.9B and will continue to rise at a 15% CAGR, making it one of the major trends to affect the marketing landscape. Yet little, if any empirical research focuses upon search engine marketing strategy by integrating the behavior of various agents in sponsored search advertising (i.e., searchers, advertisers, and the search engine platform). The dynamic structural model we propose serves as a foundation to explore these and other sponsored search advertising phenomena. Fitting the model to a proprietary data set provided by an anonymous search engine, we conduct several policy simulations to illustrate the benefits of our approach. First, we explore how information asymmetries between search engines and advertisers can be exploited to enhance platform revenues. This has consequences for the pricing of market intelligence. Second, we assess the effect of allowing advertisers to bid not only on key words, but also by consumers searching histories and demographics thereby creating a more targeted model of advertising. Third, we explore several different auction pricing mechanisms and assess the role of each on engine and advertiser profits and revenues. Finally, we consider the role of consumer search tools such as sorting on consumer and advertiser behavior and engine revenues. One key finding is that the estimated advertiser value for a click on its sponsored link averages about 24 cents. Given the typical $22 retail price of the software products advertised on the considered search engine, this implies a conversion rate (sales per click) of about 1.1%, well within common estimates of 1-2% (gamedaily.com). Hence our approach appears to yield valid estimates of advertiser click valuations. Another finding is that customers appear to be segmented by their clicking frequency, with frequent clickers placing a greater emphasis on the position of the sponsored advertising link. Estimation of the policy simulations is in progress.

Suggested Citation

  • Song Yao & Carl F. Mela, 2008. "A Dynamic Model of Sponsored Search Advertising," Working Papers 08-16, NET Institute, revised Sep 2008.
  • Handle: RePEc:net:wpaper:0816
    as

    Download full text from publisher

    File URL: http://www.netinst.org/Yao_Mela_08-16.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Patrick Bajari & C. Lanier Benkard & Jonathan Levin, 2007. "Estimating Dynamic Models of Imperfect Competition," Econometrica, Econometric Society, vol. 75(5), pages 1331-1370, September.
    2. Stephen Ryan & Catherine Tucker, 2012. "Heterogeneity and the dynamics of technology adoption," Quantitative Marketing and Economics (QME), Springer, vol. 10(1), pages 63-109, March.
    3. Patrick Bajari & Han Hong, 2006. "Semiparametric Estimation of a Dynamic Game of Incomplete Information," NBER Technical Working Papers 0320, National Bureau of Economic Research, Inc.
    4. Mireia Jofre-Bonet & Martin Pesendorfer, 2003. "Estimation of a Dynamic Auction Game," Econometrica, Econometric Society, vol. 71(5), pages 1443-1489, September.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, April.
    6. Benjamin Edelman & Michael Ostrovsky & Michael Schwarz, 2007. "Internet Advertising and the Generalized Second-Price Auction: Selling Billions of Dollars Worth of Keywords," American Economic Review, American Economic Association, vol. 97(1), pages 242-259, March.
    7. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," Review of Economic Studies, Oxford University Press, vol. 60(3), pages 497-529.
    8. Avi Goldfarb & Catherine Tucker, 2007. "Search Engine Advertising: Pricing Ads to Context," Working Papers 07-23, NET Institute, revised Sep 2007.
    9. William Vickrey, 1961. "Counterspeculation, Auctions, And Competitive Sealed Tenders," Journal of Finance, American Finance Association, vol. 16(1), pages 8-37, March.
    10. Krishna, Vijay, 2009. "Auction Theory," Elsevier Monographs, Elsevier, edition 2, number 9780123745071.
    11. Eric T. Bradlow & David C. Schmittlein, 2000. "The Little Engines That Could: Modeling the Performance of World Wide Web Search Engines," Marketing Science, INFORMS, vol. 19(1), pages 43-62, June.
    12. Diehl, Kristin & Kornish, Laura J & Lynch, John G, Jr, 2003. " Smart Agents: When Lower Search Costs for Quality Information Increase Price Sensitivity," Journal of Consumer Research, Oxford University Press, vol. 30(1), pages 56-71, June.
    13. repec:rje:randje:v:37:y:2006:3:p:645-667 is not listed on IDEAS
    14. Martin Pesendorfer & Philipp Schmidt-Dengler, 2008. "Asymptotic Least Squares Estimators for Dynamic Games -super-1," Review of Economic Studies, Oxford University Press, vol. 75(3), pages 901-928.
    15. Anindya Ghose & Sha Yang, 2007. "An Empirical Analysis of Search Engine Advertising: Sponsored Search and Cross-Selling in Electronic Markets," Working Papers 07-35, NET Institute, revised Sep 2007.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Blake & Chris Nosko & Steven Tadelis, 2015. "Consumer Heterogeneity and Paid Search Effectiveness: A Large‐Scale Field Experiment," Econometrica, Econometric Society, vol. 83, pages 155-174, January.
    2. Weijia (Daisy) Dai & Michael Luca, 2016. "Effectiveness of Paid Search Advertising: Experimental Evidence," Harvard Business School Working Papers 17-025, Harvard Business School.
    3. repec:oup:jcomle:v:8:y:2012:i:1:p:73-105. is not listed on IDEAS
    4. repec:eee:joinma:v:23:y:2009:i:2:p:108-117 is not listed on IDEAS
    5. Cédric Argenton & Jens Prüfer, 2012. "Search Engine Competition With Network Externalities," Journal of Competition Law and Economics, Oxford University Press, vol. 8(1), pages 73-105.

    More about this item

    Keywords

    Sponsored Search Advertising; Two-sided Market; Dynamic Game; Structural Models; Empirical IO; Customization; Auctions;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D44 - Microeconomics - - Market Structure, Pricing, and Design - - - Auctions
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • L86 - Industrial Organization - - Industry Studies: Services - - - Information and Internet Services; Computer Software
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing
    • M37 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Advertising

    NEP fields

    This paper has been announced in the following NEP Reports:

    Lists

    This item is featured on the following reading lists or Wikipedia pages:
    1. Online Marketing and Advertising

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:net:wpaper:0816. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nicholas Economides). General contact details of provider: http://www.NETinst.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.