IDEAS home Printed from https://ideas.repec.org/p/mtl/montde/2019-08.html
   My bibliography  Save this paper

Imposing equilibrium restrictions in the estimation of dynamic discrete games

Author

Listed:
  • Victor Aguirregabiria

    (University of Toronto)

  • Mathieu Marcoux

    (Université de Montréal)

Abstract

Imposing equilibrium restrictions provides substantial gains in the estimation of dynamic discrete games. Estimation algorithms imposing these restrictions – MPEC, NFXP, NPL, and variations – have different merits and limitations. MPEC guarantees local convergence, but requires the computation of high-dimensional Jacobians. The NPL algorithm avoids the computation of these matrices, but – in games – may fail to converge to the consistent NPL estimator. We study the asymptotic properties of the NPL algorithm treating the iterative procedure as performed in finite samples. We find that there are always samples for which the algorithm fails to converge, and this introduces a selection bias. We also propose a spectral algorithm to compute the NPL estimator. This algorithm satisfies local convergence and avoids the computation of Jacobian matrices. We present simulation evidence illustrating our theoretical results and the good properties of the spectral algorithm.

Suggested Citation

  • Victor Aguirregabiria & Mathieu Marcoux, 2019. "Imposing equilibrium restrictions in the estimation of dynamic discrete games," Cahiers de recherche 2019-08, Universite de Montreal, Departement de sciences economiques.
  • Handle: RePEc:mtl:montde:2019-08
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/1866/22366
    Download Restriction: no

    Other versions of this item:

    More about this item

    Keywords

    Dynamic discrete game; Nested pseudo-likelihood; Fixed point algorithms; Convergence; Convergence selection bias;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C57 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Econometrics of Games and Auctions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mtl:montde:2019-08. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sharon BREWER). General contact details of provider: http://edirc.repec.org/data/demtlca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.