IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article

A theory of regular Markov perfect equilibria in dynamic stochastic games: genericity, stability, and purification

  • Doraszelski, Ulrich

    ()

    (Department of Economics, Harvard University)

  • Escobar, Juan

    ()

    (Department of Industrial Engineering, University of Chile)

This paper studies generic properties of Markov perfect equilibria in dynamic stochastic games. We show that almost all dynamic stochastic games have a finite number of locally isolated Markov perfect equilibria. These equilibria are essential and strongly stable. Moreover, they all admit purification. To establish these results, we introduce a notion of regularity for dynamic stochastic games and exploit a simple connection between normal form and dynamic stochastic games.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://econtheory.org/ojs/index.php/te/article/viewFile/20100369/4290/157
Download Restriction: no

Article provided by Econometric Society in its journal Theoretical Economics.

Volume (Year): 5 (2010)
Issue (Month): 3 (September)
Pages:

as
in new window

Handle: RePEc:the:publsh:632
Contact details of provider: Web page: http://econtheory.org

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Victor Aguirregabiria & Pedro Mira, 1999. "Swapping the Nested Fixed-Point Algorithm: a Class of Estimators for Discrete Markov Decision Models," Computing in Economics and Finance 1999 332, Society for Computational Economics.
  2. Hans Haller & Roger Lagunoff, 1999. "Genericity and Markovian Behavior in Stochastic Games," Game Theory and Information 9901003, EconWPA, revised 03 Jun 1999.
  3. Ely, Jeffrey C. & Valimaki, Juuso, 2002. "A Robust Folk Theorem for the Prisoner's Dilemma," Journal of Economic Theory, Elsevier, vol. 102(1), pages 84-105, January.
  4. Herings,P. Jean-Jacques & Peeters,Ronald J.A.P, 2000. "Stationary Equilibria in Stochastic Games: Structure, Selection, and Computation," Research Memorandum 004, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  5. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
  6. repec:esx:essedp:576 is not listed on IDEAS
  7. Maskin, Eric & Tirole, Jean, 2001. "Markov Perfect Equilibrium: I. Observable Actions," Journal of Economic Theory, Elsevier, vol. 100(2), pages 191-219, October.
  8. Daron Acemoglu & James Robinson, 1999. "A Theory of Political Transitions," Working papers 99-26, Massachusetts Institute of Technology (MIT), Department of Economics.
  9. Ariel Pakes, 2000. "A Framework for Applied Dynamic Analysis in I.O," NBER Working Papers 8024, National Bureau of Economic Research, Inc.
  10. Victor Aguirregabiria & Chun-Yu Ho, 2008. "A Dynamic Oligopoly Game of the US Airline Industry: Estimation and Policy Experiments," Working Papers tecipa-337, University of Toronto, Department of Economics.
  11. Ariel Pakes & Michael Ostrovsky & Steve Berry, 2004. "Simple Estimators for the Parameters of Discrete Dynamic Games (with Entry/Exit Examples)," Harvard Institute of Economic Research Working Papers 2036, Harvard - Institute of Economic Research.
  12. Gautam Gowrisankaran & Robert J. Town, 1997. "Dynamic Equilibrium in the Hospital Industry," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 6(1), pages 45-74, 03.
  13. Govindan, Srihari & Reny, Philip J. & Robson, Arthur J., 2003. "A short proof of Harsanyi's purification theorem," Games and Economic Behavior, Elsevier, vol. 45(2), pages 369-374, November.
  14. Jonathan Levin (Stanford University) & Pat Bajari & Lanier Benkard, 2004. "Estimating Dynamic Models of Imperfect Competition," Econometric Society 2004 North American Winter Meetings 627, Econometric Society.
  15. Bernheim, B. Douglas & Ray, Debraj, 1989. "Markov perfect equilibria in altruistic growth economies with production uncertainty," Journal of Economic Theory, Elsevier, vol. 47(1), pages 195-202, February.
  16. Dirk Bergemann & Juuso Valimaki, 1996. "Learning and Strategic Pricing," Cowles Foundation Discussion Papers 1113, Cowles Foundation for Research in Economics, Yale University.
  17. Pakes, Ariel & McGuire, Paul, 2001. "Stochastic Algorithms, Symmetric Markov Perfect Equilibrium, and the 'Curse' of Dimensionality," Econometrica, Econometric Society, vol. 69(5), pages 1261-81, September.
  18. Richard Ericson & Ariel Pakes, 1995. "Markov-Perfect Industry Dynamics: A Framework for Empirical Work," Review of Economic Studies, Oxford University Press, vol. 62(1), pages 53-82.
  19. Ulrich Doraszelski & Mark Satterthwaite, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," Levine's Bibliography 321307000000000912, UCLA Department of Economics.
  20. Fudenberg, Drew & Maskin, Eric, 1986. "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information," Econometrica, Econometric Society, vol. 54(3), pages 533-54, May.
  21. Govindan, Srihari & Wilson, Robert, 2001. "Direct Proofs of Generic Finiteness of Nash Equilibrium Outcomes," Econometrica, Econometric Society, vol. 69(3), pages 765-69, May.
  22. V. Bhaskar, 1998. "Informational Constraints and the Overlapping Generations Model: Folk and Anti-Folk Theorems," Review of Economic Studies, Oxford University Press, vol. 65(1), pages 135-149.
  23. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," Review of Economic Studies, Oxford University Press, vol. 60(3), pages 497-529.
  24. Martin Pesendorfer & Philipp Schmidt-Dengler, 2008. "Asymptotic Least Squares Estimators for Dynamic Games -super-1," Review of Economic Studies, Oxford University Press, vol. 75(3), pages 901-928.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:the:publsh:632. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Martin J. Osborne)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.