IDEAS home Printed from
   My bibliography  Save this article

A theory of regular Markov perfect equilibria in dynamic stochastic games: genericity, stability, and purification


  • Doraszelski, Ulrich

    () (Department of Economics, Harvard University)

  • Escobar, Juan

    () (Department of Industrial Engineering, University of Chile)


This paper studies generic properties of Markov perfect equilibria in dynamic stochastic games. We show that almost all dynamic stochastic games have a finite number of locally isolated Markov perfect equilibria. These equilibria are essential and strongly stable. Moreover, they all admit purification. To establish these results, we introduce a notion of regularity for dynamic stochastic games and exploit a simple connection between normal form and dynamic stochastic games.

Suggested Citation

  • Doraszelski, Ulrich & Escobar, Juan, 2010. "A theory of regular Markov perfect equilibria in dynamic stochastic games: genericity, stability, and purification," Theoretical Economics, Econometric Society, vol. 5(3), September.
  • Handle: RePEc:the:publsh:632

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Ariel Pakes & Paul McGuire, 1994. "Computing Markov-Perfect Nash Equilibria: Numerical Implications of a Dynamic Differentiated Product Model," RAND Journal of Economics, The RAND Corporation, vol. 25(4), pages 555-589, Winter.
    3. Doraszelski, Ulrich & Pakes, Ariel, 2007. "A Framework for Applied Dynamic Analysis in IO," Handbook of Industrial Organization, Elsevier.
    4. Patrick Bajari & C. Lanier Benkard & Jonathan Levin, 2007. "Estimating Dynamic Models of Imperfect Competition," Econometrica, Econometric Society, vol. 75(5), pages 1331-1370, September.
    5. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," Review of Economic Studies, Oxford University Press, vol. 60(3), pages 497-529.
    6. Govindan, Srihari & Wilson, Robert, 2001. "Direct Proofs of Generic Finiteness of Nash Equilibrium Outcomes," Econometrica, Econometric Society, vol. 69(3), pages 765-769, May.
    7. Pakes, Ariel & McGuire, Paul, 2001. "Stochastic Algorithms, Symmetric Markov Perfect Equilibrium, and the 'Curse' of Dimensionality," Econometrica, Econometric Society, vol. 69(5), pages 1261-1281, September.
    8. Ely, Jeffrey C. & Valimaki, Juuso, 2002. "A Robust Folk Theorem for the Prisoner's Dilemma," Journal of Economic Theory, Elsevier, vol. 102(1), pages 84-105, January.
    9. Daron Acemoglu & James A. Robinson, 2001. "A Theory of Political Transitions," American Economic Review, American Economic Association, vol. 91(4), pages 938-963, September.
    10. Bergemann, Dirk & Valimaki, Juuso, 1996. "Learning and Strategic Pricing," Econometrica, Econometric Society, vol. 64(5), pages 1125-1149, September.
    11. V. Bhaskar, 1998. "Informational Constraints and the Overlapping Generations Model: Folk and Anti-Folk Theorems," Review of Economic Studies, Oxford University Press, vol. 65(1), pages 135-149.
    12. Fudenberg, Drew & Maskin, Eric, 1986. "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information," Econometrica, Econometric Society, vol. 54(3), pages 533-554, May.
    13. Richard Ericson & Ariel Pakes, 1995. "Markov-Perfect Industry Dynamics: A Framework for Empirical Work," Review of Economic Studies, Oxford University Press, vol. 62(1), pages 53-82.
    14. Govindan, Srihari & Reny, Philip J. & Robson, Arthur J., 2003. "A short proof of Harsanyi's purification theorem," Games and Economic Behavior, Elsevier, vol. 45(2), pages 369-374, November.
    15. Herings, P. Jean-Jacques & Peeters, Ronald J. A. P., 2004. "Stationary equilibria in stochastic games: structure, selection, and computation," Journal of Economic Theory, Elsevier, vol. 118(1), pages 32-60, September.
    16. Aguirregabiria, Victor & Ho, Chun-Yu, 2012. "A dynamic oligopoly game of the US airline industry: Estimation and policy experiments," Journal of Econometrics, Elsevier, vol. 168(1), pages 156-173.
    17. Ariel Pakes & Michael Ostrovsky & Steven Berry, 2007. "Simple estimators for the parameters of discrete dynamic games (with entry/exit examples)," RAND Journal of Economics, RAND Corporation, vol. 38(2), pages 373-399, June.
    18. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, January.
    19. Ulrich Doraszelski & Mark Satterthwaite, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," Levine's Bibliography 321307000000000912, UCLA Department of Economics.
    20. Maskin, Eric & Tirole, Jean, 2001. "Markov Perfect Equilibrium: I. Observable Actions," Journal of Economic Theory, Elsevier, vol. 100(2), pages 191-219, October.
    21. Hans Haller & Roger Lagunoff, 2000. "Genericity and Markovian Behavior in Stochastic Games," Econometrica, Econometric Society, vol. 68(5), pages 1231-1248, September.
    22. Victor Aguirregabiria & Pedro Mira, 2007. "Sequential Estimation of Dynamic Discrete Games," Econometrica, Econometric Society, vol. 75(1), pages 1-53, January.
    23. Bernheim, B. Douglas & Ray, Debraj, 1989. "Markov perfect equilibria in altruistic growth economies with production uncertainty," Journal of Economic Theory, Elsevier, vol. 47(1), pages 195-202, February.
    24. Gautam Gowrisankaran & Robert J. Town, 1997. "Dynamic Equilibrium in the Hospital Industry," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 6(1), pages 45-74, March.
    25. Victor Aguirregabiria & Pedro Mira, 2002. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Econometrica, Econometric Society, vol. 70(4), pages 1519-1543, July.
    26. Martin Pesendorfer & Philipp Schmidt-Dengler, 2008. "Asymptotic Least Squares Estimators for Dynamic Games -super-1," Review of Economic Studies, Oxford University Press, vol. 75(3), pages 901-928.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Dynamic stochastic games; Markov perfect equilibrium; regularity; genericity; finiteness; strong stability; essentiality; purifiability; estimation; computation; repeated games;

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:the:publsh:632. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Martin J. Osborne). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.