IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Purification in the Infinitely Repeated Prisoners' Dilemma

  • V. Bhaskar
  • George J. Mailath
  • Stephen Morris

receives a private payoff shock which is independently and identically distributed across players and periods. We focus on the purifiability of a class of one-period memory mixed strategy equilibria used by \cite{ElyValimaki02} in their study of the repeated prisoners' dilemma with private monitoring. We find that all such strategy profiles are not the limit of one-period memory equilibrium strategy profiles of the perturbed game, for almost all noise distributions. However, if we allow infinite memory strategies in the perturbed game, then any completely-mixed equilibrium is purifiable.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by UCLA Department of Economics in its series Levine's Bibliography with number 122247000000000028.

in new window

Date of creation: 29 Jan 2004
Date of revision:
Handle: RePEc:cla:levrem:122247000000000028
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Piccione, Michele, 2002. "The Repeated Prisoner's Dilemma with Imperfect Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 70-83, January.
  2. Bhaskar, V. & van Damme, Eric, 2002. "Moral Hazard and Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 16-39, January.
  3. V. Bhaskar & George J. Mailath & Stephen Morris, 2004. "Purification in the Infinitely-Repeated Prisoners' Dilemma," Cowles Foundation Discussion Papers 1451, Cowles Foundation for Research in Economics, Yale University.
  4. Mailath, George J. & Samuelson, Larry, 2006. "Repeated Games and Reputations: Long-Run Relationships," OUP Catalogue, Oxford University Press, number 9780195300796, December.
  5. Jeffrey Ely, 2000. "A Robust Folk Theorem for the Prisoners' Dilemma," Econometric Society World Congress 2000 Contributed Papers 0210, Econometric Society.
  6. Sekiguchi, Tadashi, 1997. "Efficiency in Repeated Prisoner's Dilemma with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 76(2), pages 345-361, October.
  7. Govindan, Srihari & Reny, Philip J. & Robson, Arthur J., 2003. "A short proof of Harsanyi's purification theorem," Games and Economic Behavior, Elsevier, vol. 45(2), pages 369-374, November.
  8. Jeffrey C. Ely & Johannes Hörner & Wojciech Olszewski, 2005. "Belief-Free Equilibria in Repeated Games," Econometrica, Econometric Society, vol. 73(2), pages 377-415, 03.
  9. V. Bhaskar & Ichiro Obara, 2000. "Belief-Based Equilibria in the Repeated Prisoners' Dilemma with Private Monitoring," Econometric Society World Congress 2000 Contributed Papers 1330, Econometric Society.
  10. Michihiro Kandori & Ichiro Obara, 2003. "Efficiency in Repeated Games Revisited: The Role of Private Strategies," CIRJE F-Series CIRJE-F-255, CIRJE, Faculty of Economics, University of Tokyo.
  11. repec:esx:essedp:576 is not listed on IDEAS
  12. V. Bhaskar, 1998. "Informational Constraints and the Overlapping Generations Model: Folk and Anti-Folk Theorems," Review of Economic Studies, Oxford University Press, vol. 65(1), pages 135-149.
  13. Stephen Morris, 2006. "Purification," Levine's Bibliography 321307000000000470, UCLA Department of Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cla:levrem:122247000000000028. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David K. Levine)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.