IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

A limit characterization of belief-free equilibrium payoffs in repeated games

  • Yamamoto, Yuichi
Registered author(s):

    The present paper studies repeated games with private monitoring, and characterizes the set of belief-free equilibrium payoffs in the limit as the discount factor approaches one and the noise on private information vanishes. Contrary to the conjecture by Ely et al. [J.C. Ely, J. Hörner, W. Olszewski, Belief-free equilibria in repeated games, Econometrica 73 (2005) 377-415], the equilibrium payoff set is computed by the same formula, no matter how many players there are. As an application of this result, a version of the folk theorem is established for N-player prisoner's dilemma games.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0022-0531(08)00121-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Economic Theory.

    Volume (Year): 144 (2009)
    Issue (Month): 2 (March)
    Pages: 802-824

    as
    in new window

    Handle: RePEc:eee:jetheo:v:144:y:2009:i:2:p:802-824
    Contact details of provider: Web page: http://www.elsevier.com/locate/inca/622869

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. V. Bhaskar, 1998. "Informational Constraints and the Overlapping Generations Model: Folk and Anti-Folk Theorems," Review of Economic Studies, Oxford University Press, vol. 65(1), pages 135-149.
    2. Hitoshi Matsushima, 2004. "Repeated Games with Private Monitoring: Two Players," Econometrica, Econometric Society, vol. 72(3), pages 823-852, 05.
    3. Aoyagi, Masaki, 2002. "Collusion in Dynamic Bertrand Oligopoly with Correlated Private Signals and Communication," Journal of Economic Theory, Elsevier, vol. 102(1), pages 229-248, January.
    4. Jeffrey Ely, 2000. "A Robust Folk Theorem for the Prisoners' Dilemma," Econometric Society World Congress 2000 Contributed Papers 0210, Econometric Society.
    5. George J. Mailath & Stephen Morris, 2005. "Coordination Failure in Repeated Games with Almost-Public Monitoring," Levine's Bibliography 122247000000000340, UCLA Department of Economics.
    6. Mailath, George J. & Morris, Stephen, 2002. "Repeated Games with Almost-Public Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 189-228, January.
    7. Michihiro Kandori & Ichiro Obara, 2003. "Efficiency in Repeated Games Revisited: The Role of Private Strategies," UCLA Economics Working Papers 826, UCLA Department of Economics.
    8. V. Bhaskar & Eric van Damme, 1998. "Moral Hazard and Private Monitoring," Game Theory and Information 9809004, EconWPA.
    9. V. Bhaskar & George J. Mailath & Stephen Morris, 2006. "Purification in the Infinitely-Repeated Prisoners' Dilemma," Cowles Foundation Discussion Papers 1571, Cowles Foundation for Research in Economics, Yale University.
    10. Fudenberg, Drew & Levine, David K. & Takahashi, Satoru, 2007. "Perfect public equilibrium when players are patient," Games and Economic Behavior, Elsevier, vol. 61(1), pages 27-49, October.
    11. D. Fudenberg & D. K. Levine, 1994. "Efficiency and Observability with Long-Run and Short-Run Players," Levine's Working Paper Archive 627, David K. Levine.
    12. Jeffrey C. Ely & Johannes Hörner & Wojciech Olszewski, 2005. "Belief-Free Equilibria in Repeated Games," Econometrica, Econometric Society, vol. 73(2), pages 377-415, 03.
    13. Michihiro Kandori & Hitoshi Matsushima, 1997. "Private observation and Communication and Collusion," Levine's Working Paper Archive 1256, David K. Levine.
    14. Bhaskar, V. & Obara, Ichiro, 2002. "Belief-Based Equilibria in the Repeated Prisoners' Dilemma with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 40-69, January.
    15. Fudenberg, Drew & Levine, David, 2007. "The Nash-Threats Folk Theorem with Communication and Approximate Common Knowledge in Two Player Games," Scholarly Articles 3203772, Harvard University Department of Economics.
    16. Fudenberg, D. & Levine, D.K. & Maskin, E., 1989. "The Folk Theorem With Inperfect Public Information," Working papers 523, Massachusetts Institute of Technology (MIT), Department of Economics.
    17. Piccione, Michele, 2002. "The Repeated Prisoner's Dilemma with Imperfect Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 70-83, January.
    18. Olivier Compte, 1998. "Communication in Repeated Games with Imperfect Private Monitoring," Econometrica, Econometric Society, vol. 66(3), pages 597-626, May.
    19. Johannes Horner & Wojciech Olszewski, 2005. "The Folk Theorem for Games with Private, Almost-Perfect Monitoring," NajEcon Working Paper Reviews 172782000000000006, www.najecon.org.
    20. Obara, Ichiro, 2009. "Folk theorem with communication," Journal of Economic Theory, Elsevier, vol. 144(1), pages 120-134, January.
    21. Yamamoto, Yuichi, 2007. "Efficiency results in N player games with imperfect private monitoring," Journal of Economic Theory, Elsevier, vol. 135(1), pages 382-413, July.
    22. Michihiro Kandori & Hitoshi Matsushima, 1998. "Private Observation, Communication and Collusion," Econometrica, Econometric Society, vol. 66(3), pages 627-652, May.
    23. Ben-Porath, E. & Kahneman, M., 1993. "Communication in Repeated Games with Private Monitoring," Papers 15-93, Tel Aviv - the Sackler Institute of Economic Studies.
    24. Sekiguchi, Tadashi, 1997. "Efficiency in Repeated Prisoner's Dilemma with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 76(2), pages 345-361, October.
    25. Michihiro Kandori, 2001. "Introduction to Repeated Games with Private Monitoring," CIRJE F-Series CIRJE-F-114, CIRJE, Faculty of Economics, University of Tokyo.
    26. Mailath, George J. & Samuelson, Larry, 2006. "Repeated Games and Reputations: Long-Run Relationships," OUP Catalogue, Oxford University Press, number 9780195300796, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:144:y:2009:i:2:p:802-824. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.