IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A Robust Folk Theorem for the Prisoner's Dilemma

  • Ely, Jeffrey C.
  • Valimaki, Juuso

We prove the folk theorem for the Prisoner's dilemma using strategies that are robust to private monitoring. From this follows a limit folk theorem : when players are patient and monitoring is sufficiently accurate, (but private and possibly independent) any feasible individually rational payoff can be obtained in sequential equilibrium. The strategies used can be implemented by finite (randomizing) automata.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Economic Theory.

Volume (Year): 102 (2002)
Issue (Month): 1 (January)
Pages: 84-105

in new window

Handle: RePEc:eee:jetheo:v:102:y:2002:i:1:p:84-105
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Mailath, G.J. & Morris, S., 1998. "Repeated Games With Imperfect Private Monitoring: Notes on a Coordination Perspective," Papers 349, Australian National University - Department of Economics.
  2. Ichiro Obara, 2000. "Private Strategy and Efficiency: Repeated Partnership Games Revisited," Econometric Society World Congress 2000 Contributed Papers 1449, Econometric Society.
  3. Radner, Roy, 1985. "Repeated Principal-Agent Games with Discounting," Econometrica, Econometric Society, vol. 53(5), pages 1173-98, September.
  4. Piccione, Michele, 2002. "The Repeated Prisoner's Dilemma with Imperfect Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 70-83, January.
  5. V. Bhaskar, 1998. "Informational Constraints and the Overlapping Generations Model: Folk and Anti-Folk Theorems," Review of Economic Studies, Oxford University Press, vol. 65(1), pages 135-149.
  6. Green, Edward J. & Porter, Robert H., 1982. "Noncooperative Collusion Under Imperfect Price Information," Working Papers 367, California Institute of Technology, Division of the Humanities and Social Sciences.
  7. Matsushima, Hitoshi, 1991. "On the theory of repeated games with private information : Part I: anti-folk theorem without communication," Economics Letters, Elsevier, vol. 35(3), pages 253-256, March.
  8. Sekiguchi, Tadashi, 1997. "Efficiency in Repeated Prisoner's Dilemma with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 76(2), pages 345-361, October.
  9. Ichiro Obara, . "The Repeated Prisoner's Dilemma with Private Monitoring: a N-player case," CARESS Working Papres 99-13, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
  10. Lehrer, E, 1989. "Lower Equilibrium Payoffs in Two-Player Repeated Games with Non-observable Actions," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(1), pages 57-89.
  11. Glenn Ellison, 1994. "Cooperation in the Prisoner's Dilemma with Anonymous Random Matching," Review of Economic Studies, Oxford University Press, vol. 61(3), pages 567-588.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:102:y:2002:i:1:p:84-105. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.