IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

When is the lowest equilibrium payoff in a repeated game equal to the minmax payoff?

Listed author(s):
  • Olivier Gossner

    (PSE - Paris-Jourdan Sciences Economiques - CNRS - Centre National de la Recherche Scientifique - ENPC - École des Ponts ParisTech - EHESS - École des hautes études en sciences sociales - INRA - Institut National de la Recherche Agronomique - ENS Paris - École normale supérieure - Paris, PSE - Paris School of Economics, LSE - London School of Economics and Political Science)

  • Johannes Hörner

    (Department Economics - Yale University - Yale University [New Haven])

We study the relationship between a player's lowest equilibrium payoff in a repeated game with imperfect monitoring and this player's minmax payoff in the corresponding one-shot game. We characterize the signal structures under which these two payoffs coincide for any payoff matrix. Under an identifiability assumption, we further show that, if the monitoring structure of an infinitely repeated game "nearly" satisfies this condition, then these two payoffs are approximately equal, independently of the discount factor. This provides conditions under which existing folk theorems exactly characterize the limiting payoff set.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by HAL in its series Post-Print with number halshs-00754488.

as
in new window

Length:
Date of creation: Jan 2010
Publication status: Published in Journal of Economic Theory, Elsevier, 2010, 145 (1), pp.63-84. <10.1016/j.jet.2009.07.002>
Handle: RePEc:hal:journl:halshs-00754488
DOI: 10.1016/j.jet.2009.07.002
Note: View the original document on HAL open archive server: https://hal-pjse.archives-ouvertes.fr/halshs-00754488
Contact details of provider: Web page: https://hal.archives-ouvertes.fr/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Johannes Hörner & Wojciech Olszewski, 2006. "The Folk Theorem for Games with Private Almost-Perfect Monitoring," Econometrica, Econometric Society, vol. 74(6), pages 1499-1544, November.
  2. Ely, Jeffrey C. & Valimaki, Juuso, 2002. "A Robust Folk Theorem for the Prisoner's Dilemma," Journal of Economic Theory, Elsevier, vol. 102(1), pages 84-105, January.
  3. Mailath, George J. & Morris, Stephen, 2002. "Repeated Games with Almost-Public Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 189-228, January.
  4. Fudenberg, Drew & Levine, David I & Maskin, Eric, 1994. "The Folk Theorem with Imperfect Public Information," Econometrica, Econometric Society, vol. 62(5), pages 997-1039, September.
  5. Mailath, George J. & Morris, Stephen, 2006. "Coordination failure in repeated games with almost-public monitoring," Theoretical Economics, Econometric Society, vol. 1(3), pages 311-340, September.
  6. Moreno, Diego & Wooders, John, 1998. "An Experimental Study of Communication and Coordination in Noncooperative Games," Games and Economic Behavior, Elsevier, vol. 24(1-2), pages 47-76, July.
  7. Fudenberg, Drew & Maskin, Eric, 1986. "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information," Econometrica, Econometric Society, vol. 54(3), pages 533-554, May.
  8. Sekiguchi, Tadashi, 1997. "Efficiency in Repeated Prisoner's Dilemma with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 76(2), pages 345-361, October.
  9. Olivier Gossner & Tristan Tomala, 2007. "Secret Correlation in Repeated Games with Imperfect Monitoring," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 413-424, May.
  10. Gossner, Olivier & Vieille, Nicolas, 2002. "How to play with a biased coin?," Games and Economic Behavior, Elsevier, vol. 41(2), pages 206-226, November.
  11. Neyman, Abraham & Okada, Daijiro, 1999. "Strategic Entropy and Complexity in Repeated Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 191-223, October.
  12. Neyman, Abraham & Okada, Daijiro, 2000. "Repeated Games with Bounded Entropy," Games and Economic Behavior, Elsevier, vol. 30(2), pages 228-247, February.
  13. Piccione, Michele, 2002. "The Repeated Prisoner's Dilemma with Imperfect Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 70-83, January.
  14. Drew Fudenberg & Jean Tirole, 1991. "Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061414, July.
  15. Olivier Gossner & Ehud Kalai & Robert Weber, 2009. "Information Independence and Common Knowledge," Econometrica, Econometric Society, vol. 77(4), pages 1317-1328, 07.
  16. Olivier Gossner & Tristan Tomala, 2006. "Empirical Distributions of Beliefs Under Imperfect Observation," Mathematics of Operations Research, INFORMS, vol. 31(1), pages 13-30, February.
  17. Bhaskar, V. & Obara, Ichiro, 2002. "Belief-Based Equilibria in the Repeated Prisoners' Dilemma with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 40-69, January.
  18. Lehrer, E, 1990. "Nash Equilibria of n-Player Repeated Games with Semi-standard Information," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(2), pages 191-217.
  19. von Stengel, Bernhard & Koller, Daphne, 1997. "Team-Maxmin Equilibria," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 309-321, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00754488. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.